ViWrap: A modular pipeline to identify, bin, classify, and predict viral-host relationships for viruses from metagenomes

Zhichao Zhou, Cody Martin, James C. Kosmopoulos, Karthik Anantharaman*

Department of Bacteriology, University of Wisconsin–Madison

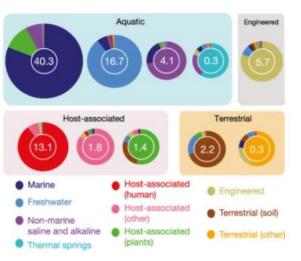
https://github.com/AnantharamanLab/ViWrap

Zhichao Zhou (zzhou388@wisc.edu); Karthik Anantharaman (karthik@bact.wisc.edu)

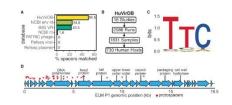
Introduction

Virome and viral genomes reconstructed from metagenomes

Uncovering Earth's virome Viro


David Paez-Espino & Nikos C. Kyrpides Nature 2016 (DOE-JGI)

Virome: metagenomes specifically targeting the viral fraction

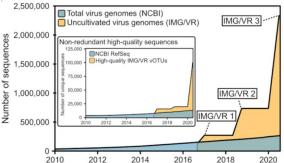

targeting the viral fraction of environmental samples

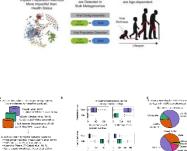
2019 Global Oceans Viromes (GOV) v2.0

Viral genomes reconstructed from metagenome: viral genomes reconstructed from bulk metagenomes

2019 Human virome database (HuVirDB)

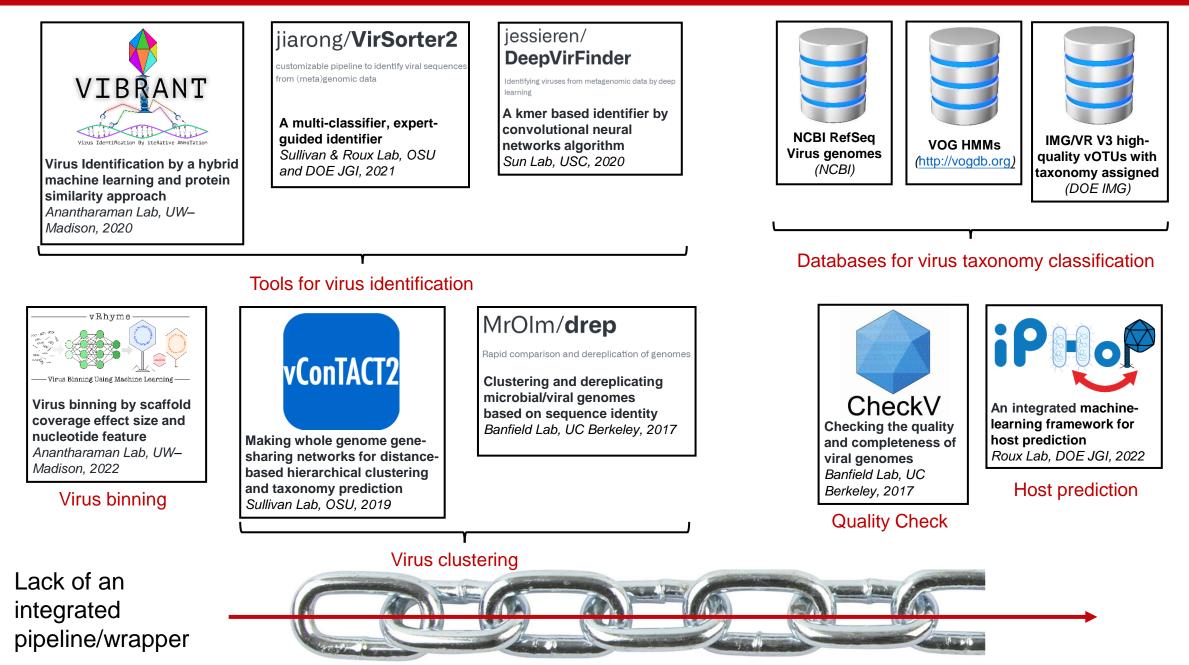
2020 Gut Virome Database (GVD)


(Uses both methods)



environments - keep updating

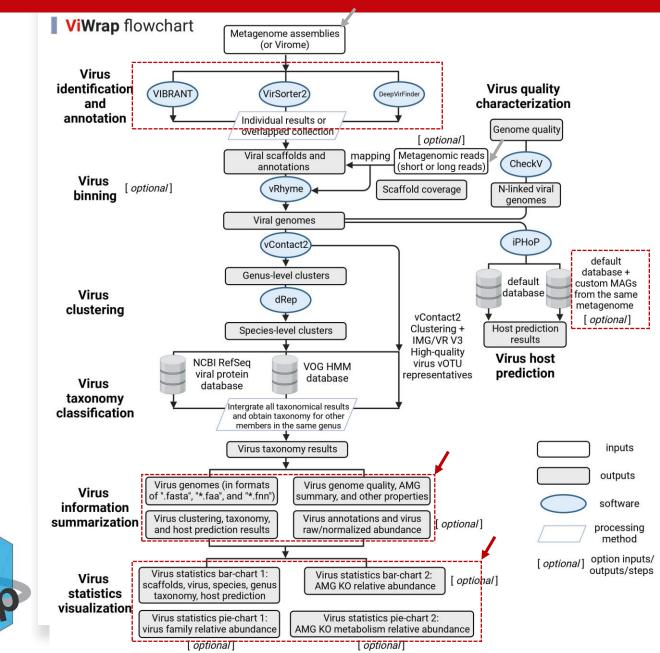
constantly


IMG V/R v3, NAR 2021 (DOE-JGI)

2021 Metagenomic Gut Virus (MGV)

Background

Workflow


Step 1 Three virus identifiers

Step 2 Metagenomic reads mapping, virus binning, and quality check

Step 3 Cluster viruses into genus and species and assign taxonomy

Step 4 Use iPHoP to predict hosts for viruses

Step 5 Summarize to obtain results and visualize virus statistics

Result layout

Organized

 00_VIBRANT_input_metageome_stem_name : the virus identification result (would be "00_VirSorter_input_metageome_stem_name", "00_DeepVirFinder_input_metageome_stem_name", "00_VIBRANT_VirSorter_input_metageome_stem_name", or "00_VIBRANT_VirSorter_DeepVirFinder_input_metageome_stem_name") 01_Mapping_result_outdir : the reads mapping result 02_vRhyme_outdir : vRhyme binning result 03_vConTACT2_outdir : vConTACT2 classifying result 04_Nlinked_viral_gn_dir : N-linked viral genome as CheckV inputs 05_CheckV_outdir : CheckV result 	intermediate folders	> 09_Virus_statistics_visualization	Results In virus statistics visualization folder	
 OS_LNECKV_OUTGATP. CHECKV result O6_dRep_outdir : dRep clustering result O7_iPHoP_outdir : iPHoP result for host prediction O8_ViWrap_summary_outdir : Summarized results O9_Virus_statistics_visualization : Visualized statistics of viruses ViWrap_run.log : running log file containing the issued command and time log 		<pre>> Result_visualization_inputs virus_statistics.txt virus_family_relative_abundance.txt KO_ID_relative_abundance.txt KO_metabolism_relative_abundance.txt > Result_visualization_outputs virus_statistics.png # the 1st bar-chart virus_family_relative_abundance.png # the KO_ID_relative_abundance.png # the 2nd ba</pre>	1st pie-chart	
<pre></pre>		 KO_metabolism_relative_abundance.png # the 2nd pie-chart virus_statistics.pdf virus_family_relative_abundance.pdf KO_ID_relative_abundance.pdf KO_metabolism_relative_abundance.pdf 		

- vRhyme*.fasta
- vRhyme*.faa
- vRhyme*.ffn

All result folders

- > Virus_normalized_abundance.txt # Normalized virus genome abundance (normalized by 100M reads/sample)
- > Virus_raw_abundance.txt # Raw virus genome abundance
- > Virus_summary_info.txt # Summarized property for all virus genomes

Summary and take home message

- ViWrap integrates currently available tools/databases for both comprehensive and stringent virus screening.
- It is flexible for options of identifying methods, metagenomic reads, and custom microbial genomes for various application scenarios.
- It has a one-stop, user-friendly workflow and generates easy-toread/parse results.

- It can be used for various environmental settings, including natural, man-made, and human microbiome-related environments
- ViWrap is publicly available via GitHub (<u>https://github.com/AnantharamanLab/ViWrap</u>). A detailed description of software usage and result interpretation can be found on the website.

Create the ViWrap conda environment

zhichao@sulfur:~cd /storage1/data11/ViWrap
zhichao@sulfur:/storage1/data11/ViWrap\$ conda create -c bioconda -p /slowdata/yml environments/ViWrap python=3.8 biopython mamba numpy pandas pyfastx

Get into the conda environment

zhichao@sulfur:/storage1/data11/ViWrap\$ conda activate /slowdata/yml_environments/ViWrap (/slowdata/yml_environments/ViWrap) zhichao@sulfur:/storage1/data11/ViWrap\$

Git clone ViWrap package and make it executable

(/slowdata/yml_environments/ViWrap) zhichao@sulfur:/storage1/data11\$ git clone https://github.com/AnantharamanLab/ViWrap (/slowdata/yml_environments/ViWrap) zhichao@sulfur:/storage1/data11\$ cd ViWrap (/slowdata/yml_environments/ViWrap) zhichao@sulfur:/storage1/data11/ViWrap\$ chmod +x ViWrap scripts/*.py (/slowdata/yml_environments/ViWrap) zhichao@sulfur:/storage1/data11/ViWrap\$ PATH=`pwd`:\$PATH

Set up the conda environments

(/slowdata/yml_environments/ViWrap) zhichao@sulfur:/storage1/data11/ViWrap\$ ViWrap set_up_env --conda_env_dir /slowdata/yml_environments/

Set up conda env

[2022-10-30 19:36:16] | Looks like the input parameter is correct ViWrap-VIBRANT conda env has been installed [2022-10-30 19:37:38] | ViWrap-vRhyme conda env has been installed [2022-10-30 19:38:18] | [2022-10-30 19:39:15] | ViWrap-vContact2 conda env has been installed ViWrap-CheckV conda env has been installed [2022-10-30 19:39:47] | ViWrap-dRep conda env has been installed [2022-10-30 19:40:38] ViWrap-Tax conda env has been installed [2022-10-30 19:40:55] ViWrap-iPHoP conda env has been installed [2022-10-30 19:43:50] [2022-10-30 19:44:07] ViWrap-GTDBTk conda env has been installed [2022-10-30 19:44:34] ViWrap-vs2 conda env has been installed [2022-10-30 19:44:56] | ViWrap-Mapping conda env has been installed [2022-10-30 19:45:59] | ViWrap-DVF conda env has been installed ViWrap-VIBRANT conda env path has been checked ViWrap-vRhyme conda env path has been checked ViWrap-vContact2 conda env path has been checked ViWrap-CheckV conda env path has been checked ViWrap-dRep conda env path has been checked ViWrap-Tax conda env path has been checked ViWrap-iPHoP conda env path has been checked ViWrap-GTDBTk conda env path has been checked ViWrap-vs2 conda env path has been checked ViWrap-DVF conda env path has been checked ViWrap-Mapping conda env path has been checked The total running time is 0:09:48 (in "hr:min:sec" format)

Set up ViWrap database

(/slowdata/yml_environments/ViWrap) zhichao@sulfur:/storage1/data11/ViWrap\$ ViWrap download --db_dir ./ViWrap_db --conda_env_dir /slowdata/yml_environments

<mark>#</mark>## Welcome to ViWrap

[2022-10-30 19:55:08] | Looks like the input conda software is correct

Set VIBRANT_DATA_PATH to /storage1/data11/ViWrap/ViWrap_db2/VIBRANT_db Downloading VIBRANT databases to /storage1/data11/ViWrap/ViWrap db2/VIBRANT db...

This script will download, extract subsets and press HMM profiles for VIBRANT. This process will require ~20GB of temporary free storage space, but the final size requirement is ~11GB in the form of pressed HMM databases. Please be patient. This only needs to be run once and will take a few minutes. Logger started. Check log file for messages and errors.

VIBRANT v1.2.1 is good to go! See example_data/ for quick test files.

VIBRANT databases are downloaded successfully. Please see log file for any error messages.

[2022-10-30 20:04:07] | VIBRANT db has been set u

. . .

. . .

2022-10-30 22:31:04 (11.3 MB/s) - './ViWrap_db2/gtdbtk_r202_data.tar.gz' saved [50840267340/50840267340]

[2022-10-30 22:39:17] | GTDB-Tk db has been set up [2022-10-30 22:44:05] | VirSorter2 db has been set up Cloning into './ViWrap_db2/DVF_db_tmp'... Updating files: 93% (28/30)^MUpdating files: 96% (29/30)^MUpdating files: 100% (30/30)^MUpdating files: 100% (30/30), done. [2022-10-30 22:44:09] | DVF db has been set up The total running time is 2:49:01 (in "hr:min:sec" format)

It takes several hours to complete, depending on the internet speed. While, it only needs to do once

Test ViWrap

(/slowdata/yml_environments/ViWrap) zhichao@sulfur:/storage1/data11/ViWrap\$ ViWrap -h

ViWrap v1.2.0: Analyzing wrapper for virus from metagenome

Usage: ViWrap <task> [options]

Task:

run Run the full wrapper for identifying, classifying, and characterizing virus genomes from metagenomes run_wo_reads Run the full wrapper for identifying, classifying, and characterizing virus genomes from metagenomes without metagenomic reads download Download and setup the ViWrap database set_up_env Set up the conda environments for all scripts clean Clean redundant information in each result directory

options: -h, --help show this help message and exit

Test ViWrap run

//slowdata/yml_environments/ViWrap) zhichao@sulfur:/storage1/data11/ViWrap\$./ViWrap run -h

Run the full wrapper for identifying, classifying, and characterizing virus genomes from metagenomes

Usage: ViWrap run --input_metagenome <input metagenome assemblies> --input_reads <input metagenomic reads> --out_dir <output directory> [options]

Example 1: ViWrap run --input_metageome /path/to/Lake_01_assemblies.fasta \

--input_reads /path/to/Lake_01_T1_1.fastq,/path/to/Lake_01_T1_2.fastq,/path/to/Lake_01_T2_1.fastq,/path/to/Lake_01_T2_2.fastq \
--out dir ./ViWrap Lake 01 outdir \

- --identify method vb-vs \
- --conda env dir /path/to/ViWrap conda environments

Example 2: ViWrap run --input_metageome /path/to/Lake_01_assemblies.fasta \

--input_reads /path/to/Lake_01_T1_1.fastq,/path/to/Lake_01_T1_2.fastq,/path/to/Lake_01_T2_1.fastq,/path/to/Lake_01_T2_2.fastq \
--out_dir ./ViWrap_Lake_01_outdir \

- --db_dir /path/to/ViWrap_db \
- --identify_method vb-vs $\overline{\setminus}$
- --conda_env_dir /path/to/ViWrap_conda_environments \
- --threads 30 \setminus
- --virome \
- --input_length_limit 2000 \
- --custom_MAGs_dir /path/to/custom_MAGs_dir

Run ViWrap

(/slowdata/yml_environments/ViWrap) zhichao@sulfur:/storage1/data11/ViWrap\$ vi run_ViWrap2.sh

python ViWrap run --input_metagenome /storagel/data11/ViWrap/Guaymas_scaffolds_min1000.subset.fasta \

--input_reads /storage1/Reads/HydroPlume/Guaymas/Guaymas_final_reads.subset10perc_1.fastq,/storage1/Reads/HydroPlume/Guaymas/Guaymas_final_reads.subset10perc_2.fastq,/storage1/Reads/HydroPlume/Guaymas/Guaymas_final_reads.subset15perc_1.fastq,/storage1/Reads/HydroPlume/Guaymas/Guaymas_final_reads.subset15perc_2.fastq \

--out_dir ./ViWrap_outdir_vb_vs \

--conda_env_dir /slowdata/yml_environments \

--threads 20 \

--input length limit 5000

--db_dir /storage1/data11/ViWrap/ViWrap_db \

--identify_method vb-vs \

-custom MAGs dir /storage1/data11/ViWrap/Guaymas bins

Welcome to ViWrap

The issued command is:

/storagel/datall/ViWrap/ViWrap run --input_metagenome /storagel/datall/ViWrap/Guaymas_scaffolds_min1000.subset.fasta --input_reads /storagel/Reads/HydroPlume/Guaymas_Guaymas_final_reads.subs
tl0perc_l.fastq,/storagel/Reads/HydroPlume/Guaymas/Guaymas_Guaymas_Guaymas_Guaymas_Guaymas/Guaymas

[2022-10-29 11:06:16] | Pre-check inputings. In processing... 2022-10-29 11:06:16] | Looks like the input metagenome and reads, database, and custom MAGs dir (if option used) are now set up well, start up to run ViWrap pipeline 2022-10-29 11:06:16] | Run VIBRANT-VirSorter2 method. Run VIBRANT to identify and annotate virus from input metagenome. In processing. 2022-10-29 11:21:16] | Run VIBRANT-VirSorter2 method. Run VIBRANT to identify and annotate viruses from input metagenome. Finished 2022-10-29 11:21:16] | Run VIBRANT-VirSorter2 method. Run VirSorter2 to identify viruses from input metagenome. Also plus CheckV to QC and trim, and KEGG, Pfam, and VOG HMMs to annotate vir ses. In processing.. [2022-10-29 15:04:36] | Run VIBRANT-VirSorter2 method. Run VirSorter2 the 1st time to identify viruses from input metagenome. Finished 2022-10-29 15:50:07] | Run VIBRANT-VirSorter2 method. Run VirSorter2 the 2nd time for CheckV-trimmed sequences. Finished [2022-10-29 15:53:28] | Run VIBRANT-VirSorter2 method. Run VIBRANT to check "keep2" and "manual check" groups and get the final VirSorter2 virus sequences. Finished 2022-10-29 16:35:45] | Run vRhyme to bin viral scaffolds. Finished 2022-10-29 17:32:22] | Run vContact2 to cluster viral genomes. Finished 2022-10-29 17:32:22] | Run CheckV to evaluate virus genome quality. In processing... 2022-10-29 17:36:40] | Run CheckV to evaluate virus genome guality. Finished 2022-10-29 17:36:40] | Run dRep to cluster virus species. In processing.. 2022-10-29 17:36:47] | Run dRep to cluster virus species. Finished 2022-10-29 17:42:43] | Conduct Host prediction by iPHoP. In processing. 2022-10-29 18:19:49] | Conduct Host prediction by iPHoP. Finished 2022-10-29 18:19:49 🕴 Conduct Host prediction by iPHoP using custom MAGs. In processing.. 2022-10-30 09:22:15] | Conduct Host prediction by iPHoP using custom MAGs. Finished [2022-10-30 09:22:17] | Get virus genome abundance. Finished [2022-10-30 09:22:17] | Get virus sequence information. Finished [2022-10-30 09:22:17] | Visualize the result. Finished The total running time is 22:16:01 (in "hr:min:sec" format)

Result

(/slowdata/yml_environments/ViWrap) zhichao@sulfur:/storage1/data11/ViWrap/ViWrap_outdir_vb_vs\$ ls								
00_VIBRANT_VirSorter_Guaymas_scaffolds_min1000.subset				_ ·_ ·_	ViWrap_run.log			
01_Mapping_result_outdir	03_vConTACT2_outdir	05_CheckV_outdir	07_iPHoP_outdir	09_Virus_statistics_visualization				

(/slowdata/yml_environments/ViWrap) zhichao@sulfur:/storage1/data11/ViWrap/ViWrap_outdir_vb_vs/08_ViWrap_summary_outdir\$ ls							
Genus_cluster_info.txt	<pre>Host_prediction_to_genus_m90.csv</pre>	Species_cluster_info.txt	Virus_genomes_files	<pre>Virus_raw_abundance.txt</pre>			
Host_prediction_to_genome_m90.csv	Sample2read_info.txt	Tax_classification_result.txt	<pre>Virus_normalized_abundance.txt</pre>	<pre>Virus_summary_info.txt</pre>			