Intra-specific difference of *Latilactobacillus sakei* on inflammatory bowel diseases: insights into potential mechanisms through comparative genomics and metabolomics analyses

Yaru Liu¹,²#, Hui Duan¹,²#, Ying Chen¹,², Chengcheng Zhang¹,², Jianxin Zhao¹,²,³,⁴, Arjan Narbad³,⁵, Fengwei Tian¹,²,⁴, Qixiao Zhai¹,²,⁴, Leilei Yu¹,²,⁴*, Wei Chen¹,²,³,⁴

¹ State Key Laboratory of Food Science and Resources, Jiangnan University
² School of Food Science and Technology, Jiangnan University
³ National Engineering Research Center for Functional Food, Jiangnan University
⁴ International Joint Research Laboratory for Probiotics at Jiangnan University
⁵ Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience

Introduction

Research Background

Inflammatory bowel diseases (IBD) are chronic inflammatory diseases of the gastrointestinal tract that have become a global health burden.

Latilactobacillus sakei can effectively alleviate various immune diseases, including colitis.

Purpose and Significance of Study:
Screen *L. sakei* from different sources and explore the intra-specific differences of *L. sakei* on IBD, establishing a theoretical basis for further research on *L. sakei* with probiotic functions.

More than five million people worldwide live with inflammatory bowel disease (IBD).
Results

Exploring the *in vitro* immunomodulatory capacity of *L. sakei*

- **CCFM1267, QGZZYRHMT1L6, QJSSZ1L4, QJSSZ4L10** up-regulated Caco-2 cell activity
- *L. sakei* regulated the expression of tight junction protein and the genes of immune-related pathways

- **4 effective:** CCFM1267, QGZZYRHMT1L6, QJSSZ1L4, QJSSZ4L10
- **2 ineffective:** QJSNT1L10, QGZZYRHMT2L6

(A) Flow chart of screening of *L. sakei* *in vitro*. (B) Impact of *L. sakei* on Caco-2 cell viability after DSS stimulation. (C) Effects of *L. sakei* on TJ protein in Caco-2 cells after DSS stimulation. (D) Influence of *L. sakei* on the expression of Caco-2 cell related immune pathway after DSS stimulation.
Results

Evaluation of alleviating effect of *L. sakei* on DSS-induced colitis in mice

- **CCFM1267**: colon length, weight, tight junction proteins ↑
 pro-inflammatory factors, inflammatory enzymes ↓

- **QJSNT1L10**: less effective

1 effective: CCFM1267
1 ineffective: QJSNT1L10

(A) Flow chart of animal experiment. (B, C) Effects of *L. sakei* on physiological indexes of mice with colitis.
(D) Effects of *L. sakei* on the histological morphology of colonic in mice with colitis. (E) Effects of *L. sakei* on colon tight junction protein content in colitis mice. (F-H) Effects of *L. sakei* on inflammatory enzyme content in colitis mice. (I-M) Effects of *L. sakei* on cytokine content in colitis mice.
Results

Influence of *L. sakei* on gut microbiota and SCFAs

(A) α diversity of gut microbiota in colitis mice. (B) β diversity of the gut microbiota in colitis mice. (C) Effects of *L. sakei* on SCFAs content in colitis mice. (D, F) Effects of *L. sakei* on the phylum level of the gut microbiota in colitis mice. (E) LEfSe difference of gut microbiota in colitis mice after intervention by *L. sakei*. (G) The relative abundance of different bacteria species after *L. sakei* intervention.

- **SCFA-producing bacteria**: Enterorhabdus, *Roseburia*, *Alloprevotella*, *Adlercreutzia*
- **anti-inflammatory**

- CCFM1267 revealed a pronounced upregulatory trend of SCFAs compared to QJSNT1L10
Results

The mechanism of different strains on relieving colitis

- CCFM1267 and QJSNT1L10 belonged to two subspecies
- There were significant differences in carbohydrate-active enzymes
- Acetylcholine and indole-3-acetic acid may be the key metabolites

(A) Flow chart of comparative genomic analysis and metabolome analysis of different genera. (B) Analysis of homologous genes of *L. sakei*. (C) Average nucleotide consistency analysis of *L. sakei*. (D) Phylogenetic analysis of *L. sakei*. (E, F) Carbohydrate active enzyme analysis of *L. sakei* from different sources. (G) OPLS-DA score plot of all metabolites in *L. sakei*. (H) Volcanic map of differential metabolites.
Intra-specific variations in the effects of *L. sakei* on IBD have been observed in both *in vitro* and *in vivo* models. Differences in the carbohydrate-active enzymes of *L. sakei* may exert an indirect influence on the gut microbiota. Acetylcholine and indole-3-acetic acid were tentatively identified as key substances.

“iMeta” is an open-access Wiley partner journal launched by scientists of the Chinese Academy of Sciences. iMeta aims to promote metagenomics, microbiome, and bioinformatics research by publishing original research, methods, or protocols, and reviews. The goal is to publish high-quality papers (Top 10%, IF > 15) targeting a broad audience. Unique features include video submission, reproducible analysis, figure polishing, APC waiver, and promotion by social media with 500,000 followers. Three issues were released in March, June, and September 2022.