Daily occupational exposure in swine farm alters human skin microbiota and antibiotic resistome

Dong-Rui Chen1,2,3,4,5#, Ke Cheng5#, Lei Wan1,2,3,4, Chao-Yue Cui6, Gong Li1,2,3,4, Dong-Hao Zhao1,2,3,4, Yang Yu1,2,3,4, Xiao-Ping Liao1,2,3,4, Ya-Hong Liu1,2,3,4, Alaric W. D’Souza7,8*, Xin-Lei Lian1,2,3*, Jian Sun1,2,3,4*

1 State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University
2 Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University
3 Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University
4 Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University
5 Guangxi State Farms Yongxin Animal Husbandry Group Co., Ltd.
6 Laboratory Animal Centre, Wenzhou Medical University
7 Boston Children’s Hospital Department of Pediatrics
8 Harvard Medical School

Dong-Rui Chen, Ke Cheng, Lei Wan, Chao-Yue Cui, Gong Li, Dong-Hao Zhao, Yang Yu, Xiao-Ping Liao, Ya-Hong Liu, Alaric W. D’Souza, Xin-Lei Lian, Jian Sun. 2023. Daily occupational exposure in swine farm alters human skin microbiota and antibiotic resistome. iMeta
Introduction

- Antimicrobial resistance (AMR) is widespread in humans, animals, and the environments.
- The farming environment has received considerable attention for its role in Antibiotic resistance genes (ARGs) and Antibiotic resistance bacteria (ARB) transmission.

The European Medicines Agency (EMA) advocates the prudent and responsible use of veterinary antibiotics

Diagram of transmission routes of AMR among the farm animals, environments, and humans

McEwen et al. *Microbiology Spectrum*, 2018
Introduction

◆ Environmental exposure remolds human gut microbiota and antibiotic resistome in swine farms.
◆ ARGs can be transmitted by host bacteria among farm environments, animals, and the human oral cavity.

Sun et al. *Nature Communications*, 2020

Ding et al. *Sci Total Environ*, 2021
Human skin microbiome altered in response to environmental and occupational exposure.
Frequent interactions with farm animals reshape human skin microbiome and increase the risk of skin infections in livestock workers.

Selway et al. Environment International, 2020
Peng et al. Microorganisms, 2019
Skin microbiota is considered as one important reservoir of both ARGs and ARB.

Previous studies have found that long-term occupational exposure in swine farms alters human skin microbiota.

Li et al. *Microbiome*, 2021

Wang et al. *Frontiers in Microbiology*, 2023
Exposure to livestock-associated environment, which is with more microbially enriched than school environment, can remodel the human skin microbiome.

5-hour exposure is sufficient to alter the structure of human skin microbiome.

Figure 1 Changes in skin microbiota diversity following environmental exposure.
Results

➢ Phyla: Dominant phyla did not change; Genera: The genera with the most significant changes were *Lactobacillus*, *Brevibacterium* and *Enterococcus*. Species: The low abundance species changed significantly, while the high abundance dominant species remained relatively stable.

➢ A total of 42 distinct microorganisms were found, most of which belonged to *Staphylococcus* and *Corynebacterium*.

Figure 2 The variation of workers’ skin microbiota composition across time points.
Results

➢ Environmental dusts were the main drivers of skin microbiome alteration after occupational exposure.
➢ The significantly altered species demonstrated close phylogenetic relationships to environmental microbiome.

Figure 3 Transmission of microbes from the swine farm environment to workers’ skin.
Results

➢ Diversity and abundance of human skin resistome significantly increased in response to exposure in farm.
➢ The structure of human skin resistomes displayed similar patterns to that of dust yet differed from that of swine feces.
➢ The most significantly elevated ARG type was the lincosamide resistance gene.

Figure 4 Antibiotic resistome structure was influenced by occupational exposure.
The most enriched ARG subtypes were tetracycline ARGs such as tet(X), tet(X3-X6), and tet(W).

The resistome highly correspond to microbial composition.

ARGs can be transferred between the swine farm environments and human skins via microbial exchange.
Summary

（1）5 hours of exposure is sufficient to alter the microbiota and ARG structure of skin and these changes were retained once formed, wherein the environmental dust is a major driver of the change.

（2）Acquired ARB from swine farm are able to stably persist on human skin, indicating the potential risk of transmission of such ARGs among ecologies.

（3）It is necessary to take corresponding intervention measures in the production process to reduce the possibility of ARGs and ARB transmission.

Dong-Rui Chen, Ke Cheng, Lei Wan, Chao-Yue Cui, Gong Li, Dong-Hao Zhao, Yang Yu, Xiao-Ping Liao, Ya-Hong Liu, Alaric W. D’Souza, Xin-Lei Lian, Jian Sun. 2023. Daily occupational exposure in swine farm alters human skin microbiota and antibiotic resistome. iMeta
“iMeta” is an open-access Wiley partner journal launched by scientists of the Chinese Academy of Sciences. iMeta aims to promote metagenomics, microbiome, and bioinformatics research by publishing original research, methods, or protocols, and reviews. The goal is to publish high-quality papers (Top 10%, IF > 15) targeting a broad audience. Unique features include video submission, reproducible analysis, figure polishing, APC waiver, and promotion by social media with 500,000 followers. Three issues were released in March, June, and September 2022.

Society: http://www.imeta.science
Publisher: https://wileyonlinelibrary.com/journal/imeta
Submission: https://mc.manuscriptcentral.com/imeta
office@imeta.science
iMetaScience
iMetaScience