Lactobacillus rhamnosus GG triggers intestinal epithelium injury in zebrafish revealing host dependent beneficial effects

Zhen Zhang¹,², Hong-Ling Zhang³, Da-Hai Yang⁴, Qiang Hao³, Hong-Wei Yang³, De-Long Meng³, Willem Meindert de Vos⁵,⁶, Le-Luo Guan², Shu-Bin Liu³, Tsegay Teame³,⁷, Chen-Chen Gao³, Chao Ran¹, Ya-Lin Yang¹, Yuan-Yuan Yao¹, Qian-Wen Ding¹*, Zhi-Gang Zhou³*

¹ Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences
² Faculty of Land and Food Systems, The University of British Columbia
³ China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences
⁴ State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology
⁵ Laboratory of Microbiology, Wageningen University and Research
⁶ Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
⁷ Tigray Agricultural Research Institute

Zhen Zhang, Hong-Ling Zhang, Da-Hai Yang, Qiang Hao, Hong-Wei Yang, De-Long Meng, Willem Meindert de Vos, Le-Luo Guan, Shu-Bin Liu, Tsegay Teame, Chen-Chen Gao, Chao Ran, Ya-Lin Yang, Yuan-Yuan Yao, Qian-Wen Ding, Zhi-Gang Zhou. 2024. Lactobacillus rhamnosus GG triggers intestinal epithelium injury in zebrafish revealing host dependent beneficial effects. iMeta 3: e181. https://DOI: 10.1002/imt2.181
Lactobacillus rhamnosus GG (LGG), a human-derived probiotic strain

PB22: the mutant strain of LGG lacking pilin SpaCBA

Compared with PB22, LGG did not enhance the resistance to pathogen of zebrafish

(Reunanen J et al., 2012; Cynthia-E et al., 2015)

(He SX et al., 2017)
Results

1. SpaC pilin subunit is responsible for the zebrafish intestinal mucosa damage

- SpaC pilin subunit is responsible for the intestinal mucosa-damaging of LGG in zebrafish.
- Pyroptosis participates in the intestinal mucosa-damaging effect of SpaC pilin subunit in zebrafish.
SpaC can activate Caspase-3–GSDMEa and Caspy2–GSDMEb pyroptosis pathways, while lipopolysaccharide (LPS) can only activate Caspy2-GSDMEb pyroptosis pathway in the intestinal mucosa of zebrafish.

Both diets containing SpaC and LPS can lead to gut microbiota dysbiosis and elevation of serum LPS.
Results

3. Gut microbiota partly accounts for the intestinal pyroptosis induced by the SpaC-containing diet

- With no involvement of gut microbiota, SpaC only activated Caspase-3–GSDMEa pathway.
- Gut microbiota induced by the SpaC-containing diet can activate intestinal pyroptosis at least through the pathway of Caspy2–GSDMEb.
- The activation of the Caspy2–GSDMEb pathway is a secondary result of the SpaC-induced Caspase-3–GSDMEa pathway.
4. The interaction between SpaC and zebrafish toll-like receptor 4ba (TLR4ba) initiates intestinal pyroptosis.

- TLR4ba is essential for SpaC-induced pyroptosis.
SpaC induce cell pyroptosis in zebrafish but not in humans.

The extracellular domain of zTLR4ba contributes to the species-specific recognition to SpaC.

SpaC can interact with zTLR4ba and hTLR2 but not hTLR4.
Summary

The mechanisms underlying the activation of SpaC to intestinal pyroptosis

- SpaC pilin acts a causative factor of LGG-induced intestinal mucosa damage in zebrafish.
- Dietary SpaC directly induces intestinal pyroptosis by activating GSDMEa in zebrafish.
- Dietary SpaC induces gut microbial dysbiosis characterized by higher abundance of LPS-producing gut microbes in zebrafish.
- LPS-producing gut microbes subsequently activate Gaspy2–GSDMEb pyroptosis pathway in zebrafish.

This study presents the risk of non-host-associated classic probiotics on fish!

Zhen Zhang, Hong-Ling Zhang, Da-Hai Yang, Qiang Hao, Hong-Wei Yang, De-Long Meng, Willem Meindert de Vos, Le-Luo Guan, Shu-Bin Liu, Tsegay Teame, Chen-Chen Gao, Chao Ran, Ya-Lin Yang, Yuan-Yuan Yao, Qian-Wen Ding, Zhi-Gang Zhou. 2024. Lactobacillus rhamnosus GG triggers intestinal epithelium injury in zebrafish revealing host dependent beneficial effects. iMeta 3: e181. https://DOI: 10.1002/imt2.181
iMeta: Integrated meta-omics to change the understanding of the biology and environment

“iMeta” is an open-access Wiley partner journal launched by iMeta Science Society consist of scientists in bioinformatics and metagenomics world-wide. iMeta aims to promote microbiome, and bioinformatics research by publishing research, methods/protocols, and reviews. The goal is to publish high-quality papers (top 10%, IF>20) targeting a broad audience. Unique features include video submission, reproducible analysis, figure polishing, bilingual, and promotion by social media with 500,000 followers. Since 2022 have been published 160 papers and cited > 2300 times. Index by ESCI, Google Scholar, DOAJ and Scopus.

Society: http://www.imeta.science
Publisher: https://wileyonlinelibrary.com/journal/imeta
Submission: https://wiley.atyponrex.com/journal/IMT2

office@imeta.science
Promotion Video