Arbuscular mycorrhizal fungal interactions bridge the support of root-associated microbiota for slope multifunctionality in an erosion-prone ecosystem

Tianyi Qiu1,2, Josep Peñuelas3, Yinglong Chen1, Jordi Sardans3, Jialuo Yu4, Zhiyuan Xu1, Qingliang Cui5, Ji Liu6, Yongxing Cui7, Shuling Zhao5, Jing Chen8, Yunqiang Wang9, Linchuan Fang1,2,9

1Northwest A&F University, 2Wuhan University of Technology, 3Universitat Autònoma de Barcelona, 4Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 5Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 6Central China Normal University, 7Freie Universität Berlin, 8Renmin Hospital of Wuhan University, 9Chinese Academy of Sciences Center for Excellence in Quaternary Science and Global Change

Tianyi Qiu, Josep Peñuelas, Yinglong Chen, Jordi Sardans, Jialuo Yu, Zhiyuan Xu, Qingliang Cui, Ji Liu, Yongxing Cui, Shuling Zhao, Jing Chen, Yunqiang Wang, Linchuan Fang. 2024. Arbuscular mycorrhizal fungal interactions bridge the support of root-associated microbiota for slope multifunctionality in an erosion-prone ecosystem. \textit{iMeta} 3: e187. \url{https://doi.org/10.1002/imt2.187}
The Loess Plateau is a traditionally erosion-induced degraded region, characterized by soil erosion and nutrient immobilization, resulting in generally low soil phosphorus availability.

Eroded slopes are the basic landscape unit of the Loess Plateau. Slope position can strongly affect biological phosphorus utilization and even the biodiversity–ecosystem functioning relationship.

Qiu et al., 2023, *Catena*
Introduction

- Soil microbiota, especially the root-associated microbiota, plays a pivotal role in restoring degraded ecosystems by executing an array of essential functions, such as nutrient cycling, organic matter decomposition, and primary production.
- Rhizobia and arbuscular mycorrhizal (AM) fungi share a signaling pathway and mutually promote colonization in the rhizosphere, implying their co-evolution that may largely contribute to phosphorus-limited ecosystems being restored with woody legumes, such as *Robinia pseudoacacia.*

Coban et al., 2022, *Science*

Wang et al., 2022, *Plant Cell*
Introduction

Unfortunately, existing knowledge about microbial diversity and functionality shifts along slopes is fragmented, with the focus limited to a single microbial kingdom or ecosystem function; Ecological networks serve as useful tools for comprehending complex biological interactions and can disentangle the roles of keystone microbial taxa in community assembly and ecosystem functioning. In eroded landscapes, dominant keystone taxa in network clusters have been identified as the engine to support multifunctionality and mitigate erosion impacts. However, microbial network complexity and interactions within and among fungal and bacterial kingdoms that are critical for maintaining multifunctionality during natural restoration processes, are still unclear.

Hypothesis:

a) All facets of multifunctionality would be driven by and dependent on the diversity of root-associated microbiota, among which AM fungi were the foremost given their proficiency in alleviating P limitation for *R. pseudoacacia*;
b) Cross-kingdom networks would be more connected than single-kingdom networks, with AM fungi serving as the central figure due to their fundamental role in niche partitioning and interactions with other microbial assemblies;
c) Regardless of the resource distribution along the slope, AM fungal interactions would robustly support multifunctionality, particularly the mutualism with rhizobia that benefits *R. pseudoacacia* by supplying N and P synergistically.
Methods

- **Robinia pseudoacacia**
- 60 m × 30 m, three positions were established at an interval of 20 m
- 6 replications, 18 plots (10 m × 10 m)

Environmental variables: Moisture; pH; Bulk density; SOC; Soil N:P; TP

Root-associated microbiota: AM fungi; Bacteria; Rhizobia

Ecosystem functioning: Microbially driven C pools (dissolved organic C and microbial biomass C); Nutrient cycling (total dissolved N, Olsen-P, microbial biomass N, microbial biomass P); Organic matter decomposition (β-glucosidase, N-acetylglucosaminidase, leucine aminopeptidase, and alkaline phosphatase); Plant production (leaf C content and litter C content)
Results

- Slope position significantly impacted multiple ecosystem functions and thereafter the average multifunctionality;

- Three dimensions of slope multifunctionality were identified using principal component analysis, jointly capturing 68.4% of the spatial variation in ecosystem functions;

- The first dimension (PC1), which was dominated by microbially driven C pools and organic matter decomposition, exhibited a distribution similar to that of the average multifunctionality.

Table S1 Distribution of ecosystem functions related to four important services on the slope using linear mixed-effects models.

<table>
<thead>
<tr>
<th>Service</th>
<th>Function</th>
<th>Top</th>
<th>Middle</th>
<th>Bottom</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbially driven C pools</td>
<td></td>
<td>103±4.51</td>
<td>89.4±5.23</td>
<td>76.4±3.40</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>164±16.8</td>
<td>127±13.2</td>
<td>84.2±6.6</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29.4±1.84</td>
<td>28.3±1.67</td>
<td>21.4±1.70</td>
<td>*</td>
</tr>
<tr>
<td>Nutrient cycling</td>
<td>Olsen-P</td>
<td>0.38±0.10</td>
<td>0.35±0.14</td>
<td>0.16±0.03</td>
<td>n.s.</td>
</tr>
<tr>
<td></td>
<td>MBN</td>
<td>14.3±1.3</td>
<td>13.3±1.6</td>
<td>12.9±2.0</td>
<td>n.s.</td>
</tr>
<tr>
<td></td>
<td>MBP</td>
<td>6.82±0.93</td>
<td>5.67±0.41</td>
<td>2.91±0.30</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>BG</td>
<td>15.9±1.23</td>
<td>11.3±1.23</td>
<td>11.3±2.3</td>
<td>n.s.</td>
</tr>
<tr>
<td>Organic matter decomposition</td>
<td></td>
<td>8.70±0.30</td>
<td>1.93±0.51</td>
<td>1.80±0.40</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>LAP</td>
<td>40.7±2.16</td>
<td>33.2±1.63</td>
<td>27.3±2.1</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>AP</td>
<td>73.2±5.94</td>
<td>74.4±5.21</td>
<td>82.9±4.86</td>
<td>n.s.</td>
</tr>
<tr>
<td></td>
<td>Leaf C</td>
<td>544±6.8</td>
<td>582±8.24</td>
<td>573±4.87</td>
<td>**</td>
</tr>
<tr>
<td>Plant production</td>
<td>Litter C</td>
<td>509±6.73</td>
<td>518±7.07</td>
<td>497±6.66</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

P values indicate significance levels: **p < 0.01**, ***p < 0.001*.
• The dominant bacterial order and rhizobial genus were *Rhizobiales* and *Bradyrhizobium*, respectively.

• **AM fungal richness** and the composition of bacterial and rhizobial communities collectively drove slope multifunctionality.

• **Soil N:P** that decreased from the top to the bottom position, emerged as a crucial abiotic factor influencing slope multifunctionality.
The networks became more interconnected and exhibited reduced modularity when AM fungal interactions were incorporated.

Two AM fungal ASVs were also recognized as keystone species in the cross-kingdom networks, assuming the topological roles of network connectors.

The strength of positive associations was much higher than that of negative associations, aligning with the ratio of positive and negative edges.
➢ Biotic factors contributed much more than abiotic factors to the explained variations in bacterial and rhizobial compositions, especially those biotic associations between rhizobia and AM fungi.

➢ AM fungi also facilitated the assembly and phylogeny of bacterial and rhizobial communities.
Results

• The reduced negative rhizobia–AM fungi association (i.e., less competition) significantly supports slope multifunctionality, especially microbially driven C pools and lignin decomposition;

• Their stronger positive association releases greater phosphorus mineralization potential.
Explicit variations in slope multifunctionality were across different slope positions, associated with shifts in limiting resources, including soil P and moisture.

In response to resource limitations, *R. pseudoacacia* strategically recruits AM fungi, forming an AM fungal-centered network in the rhizosphere.

The *R. pseudoacacia*–AM fungi–rhizobia tripartite association robustly supports slope multifunctionality via enhanced decomposition of recalcitrant compounds, improved P mineralization potential, and optimized microbial metabolism.

iMeta: Integrated meta-omics to change the understanding of the biology and environment

“iMeta” is an open-access Wiley partner journal launched by iMeta Science Society consist of scientists in bioinformatics and metagenomics world-wide. iMeta aims to promote microbiome, and bioinformatics research by publishing research, methods/protocols, and reviews. The goal is to publish high-quality papers (top 10%, IF>20) targeting a broad audience. Unique features include video submission, reproducible analysis, figure polishing, bilingual, and promotion by social media with 500,000 followers. Since 2022 have been published 160 papers and cited > 2300 times. Index by ESCI, Google Scholar, DOAJ and Scopus.

Society: http://www.imeta.science
Publisher: https://wileyonlinelibrary.com/journal/imeta
Submission: https://wiley.atyponrex.com/journal/IMT2

office@imeta.science
Promotion Video