Prophylactic supplementation with *Bifidobacterium infantis* or its metabolite inosine attenuates cardiac ischemia/reperfusion injury

Hao Zhang¹,²*, Jiawan Wang¹,³*, Jianghua Shen¹,²,⁴*, Siqi Chen¹,²,⁴, Hailong Yuan¹,⁴,⁵, Xuan Zhang²,⁶, Xu Liu¹,²,⁴, Ying Yu²,⁶, Xinran Li¹,²,⁴, Zeyu Gao¹,⁴,⁷, Yaohui Wang⁵, Jun Wang²,⁶#, Moshi Song¹,²,⁴,⁷#

¹Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
²University of Chinese Academy of Sciences, Beijing 100049, China
³Beijing Chao-Yang Hospital, Department of Anesthesiology, Beijing 100020, China
⁴Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
⁵Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng 475004, China
⁶CAS Key Laboratory of Pathogenic Microbiology and Immunology, Chinese Academy of Sciences, Beijing 100101, China
⁷Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China

- *Bifidobacterium infantis*, a well-known probiotic, exhibits prophylactic cardioprotective effects against myocardial I/R injury.
- The cardioprotective effects of *Bifidobacterium infantis* are recapitulated by its metabolite inosine.
- Inosine treatment suppresses cardiac inflammation by reducing the production of proinflammatory cytokines and regulating immune cells after I/R.
- Inosine treatment attenuates cell death by serving as an alternative carbon source for ATP generation through the purine salvage pathway in stressed myocytes and in I/R-injured mouse hearts.
Figure 1. The gavage of *B. infantis* mitigated cardiac injury in mouse hearts following ischemia/reperfusion (I/R).
Results

Figure 2. The gavage of *B. infantis* decreased cardiac fibrosis and cell apoptosis in mouse hearts following I/R.
Figure 3. Inosine recapitulated the cardioprotective effects of *B. infantis* in mouse hearts against I/R.
Results

Figure 4. Transcriptional analysis revealing the improved energy metabolism and suppressed immune response in mouse hearts subjected to I/R surgery and inosine treatment.
Figure 5. Inosine reduced cardiac inflammation after I/R via the activation of the anti-inflammatory A(2A) receptor.
Figure 6. Inosine attenuated cardiac cell death by serving as an alternative carbon source for ATP generation through the purine salvage pathway.
Summary

❑ Our study demonstrates the prophylactic potential of *Bifidobacterium infantis* and its metabolite inosine in mitigating I/R injury after acute MI.

❑ Inosine exerts an anti-inflammatory effect on immune cells and functions as an alternative energy source to alleviate cardiac cell death following I/R.

❑ This study offers crucial insights for the translational application of *Bifidobacterium infantis* and its metabolite inosine in preventing, and potentially treating, myocardial I/R injury and even a broader range of cardiovascular diseases.

Hao Zhang, Jiawan Wang, Jianghua Shen, Siqi Chen, Hailong Yuan, Xuan Zhang, Xu Liu, Ying Yu, Xinran Li, Zeyu Gao, Yaohui Wang, Jun Wang, Moshi Song. 2024. Prophylactic supplementation with *Bifidobacterium infantis* or its metabolite inosine attenuates cardiac ischemia/reperfusion injury. *iMeta* 3: e220. https://doi.org/10.1002/imt.2220
“iMeta” is a Wiley partner journal launched by iMeta Science Society in 2022, receiving its first impact factor (IF) of 23.7 in 2024, ranking 2/165 in the microbiology field. It aims to publish innovative and high-quality papers with broad and diverse audiences. Its scope is similar to *Nature Biotechnology*, *Nature Microbiology*, and *Cell Host & Microbe*. Its unique features include video abstract, bilingual publication, and social media dissemination, with more than 500,000 followers. It has published 200+ papers and been cited for 4000+ times, and has been indexed by ESCI/WOS/JCR, PubMed, Google Scholar, and Scopus.

“iMetaOmics” is a sister journal of “iMeta” launched in 2024, with a target IF>10, and its scope is similar to *Microbiome, ISME J, Nucleic Acids Research, Briefings in Bioinformatics, Bioinformatics*, etc. All contributes are welcome!