Intestinal microbiota by angiotensin receptor blocker therapy exerts protective effects against hypertensive damages.

Jing Li¹,²#, Si-Yuan Wang¹,²#, Kai-Xin Yan¹,², Pan Wang¹,², Jie Jiao¹,², Yi-Dan Wang¹,², Mu-Lei Chen¹,², Ying Dong¹,²*, Jiu-Chang Zhong¹,²*

¹Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University
²Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University

Intestinal microbiota is closely linked to cardiovascular disease

Manipulation of the gut microbiota in hypertensive patients treated with ACEI/ARB
ARB-modulated gut microbes ameliorate high BP and vascular damage

- The blood pressure of SHR rats significantly decreased after ARB-FMT.
- ARB-FMT visibly reduced vascular fibrosis, but did not reverse vascular media thickness and media/lumen area ratio in hypertension.
ARB-FMT rebuilds gut microbiota and affects intestinal gene profiles

- **Bifidobacterium**, **Coprococcus**, and **Clostridium** were prominently elevated in SHRs receiving ARB-modified microbiota, while **Lactobacillus**, **Oscillospira**, **Aggregatibacter**, **Veillonella**, **Roseburia**, **Phascolarctobacterium**, **Desulfovibrio** were notably reduced.

- The capacities of the gut microbiota following ARB-FMT were significantly enhanced in pathways of Glutaryl-CoA degradation, fatty acid beta-oxidation, and L-1,2-propanediol degradation but decreased in L-arginine degradation, fatty acid salvage, and ornithine degradation.
Transcriptome and RNA expression profiles within the intestine of ARB-FMT rats

- ARB-FMT treatment significantly augmented the expression of 56 genes and abated the expression of 19 genes in the gut.
- The reduction of Nfil3 and Arntl, as well as the upregulation of Ciart, Cipc, Per1, Per2, Per3, Tef, Sgk1, Dbp, Pdk4, Klf15 etc., were consistently observed after ARB-FMT.
- GO enrichment analysis indicated remarkably enhanced potentials of circadian rhythm in ARB-FMT rats but deficient abilities to constitute cyclin-dependent protein serine/threonine kinase and protein kinase holoenzyme complex.
WC-FMT improved the therapeutic efficacy of valsartan in SHRs.

- The gut microbiota of WC hypertensive patients improved the antihypertensive effect of valsartan.
- WC-FMT remarkably enhanced the effect in ARB reducing vascular fibrosis.
Manipulation of the gut microbiota by supplementing bacteria from WC donors

- Microbes markedly enriched in FMT plus ARB-treated animals were *Phascolarctobacterium*, *Paraprevotella*, *Bilophila*, and *Helicobacter*, whereas the depleted bacteria included *Pediococcus*, *Megasphaera*, *Dialister*, *Aggregatibacter*, *Coprobiacillus*, *Lactobacillus*, *Desulfovibrio*, etc.

- WC-FMT has an impact on the gut microbiota function of ARB intervention in SHR rats, promoting the metabolism of linoleic acid and tryptophan, the degradation of valine, leucine, and isoleucine but suppressed O-glycan.
Transcriptome profiles of RNA in the intestine are affected by WC microbiota.

- In the ARB+WC group, 1,093 dramatically increased, and 835 genes decreased.
- The reduction of Duox2, as well as the upregulation of Asah2, Lct, Alpi, Si, Aadac, Dao etc., were affected by WC microbiota in ARB rats.
- The genes enhanced in ARB+WC were implicated in monocarboxylic acid, fatty acid metabolism, and lipid catabolism, while those depleted had a crucial role in the immune system and inflammatory response.
Summary

Angiotensin receptor blocker (ARB)-modified gut microbiota lead to reduced systolic blood pressure (BP) levels and exert protective roles in spontaneously hypertensive rats (SHRs).

ARB-modified fecal microbiota transplantation (FMT) contributes to the reconstruction of the gut microbiota, serum metabolome and intestinal transcriptome in SHRs.

Fecal microbiota from hypertensive patients treated with ARB improved the therapeutic efficacy of valsartan in SHRs.

“iMeta” is a Wiley partner journal launched by iMeta Science Society in 2022, receiving its first impact factor (IF) of 23.7 in 2024, ranking 2/165 in the microbiology field. It aims to publish innovative and high-quality papers with broad and diverse audiences. Its scope is similar to Nature Biotechnology, Nature Microbiology, and Cell Host & Microbe. Its unique features include video abstract, bilingual publication, and social media dissemination, with more than 500,000 followers. It has published 200+ papers and been cited for 4000+ times, and has been indexed by ESCI/WOS/JCR, PubMed, Google Scholar, and Scopus.

“iMetaOmics” is a sister journal of “iMeta” launched in 2024, with a target IF>10, and its scope is similar to Microbiome, ISME J, Nucleic Acids Research, Briefings in Bioinformatics, Bioinformatics, etc. All contributes are welcome!

Society: http://www.imeta.science
Publisher: https://wileyonlinelibrary.com/journal/imeta
Submission: https://wiley.atyponrex.com/journal/IMT2 https://wiley.atyponrex.com/journal/IMO2

office@imeta.science
imetaomics@imeta.science

Promotion Video