The Human Lung Microbiome
- A Hidden Link for Human Health and Diseases

Xinzhu Yi, Jingyuan Gao, Zhang Wang
South China Normal University
Guangzhou, China

The Human Lung Microbiome

Lung Microbiome - Summary

Sampling and sequencing
- Sputum/BAL/Brushings
- Lung tissue
- Amplicon-based/Metagenomics
- Multi-omics

Disease applications
- Chronic lung diseases
- Acute lung diseases
- Lung cancer
- Other lung diseases

The lung microbiome

Current challenges
- Low microbial-host ratio
- Disease heterogeneity
- Microbiome manipulation
- Culturability

Future promises
- Diagnosis
- Spatial dynamics
- Microbe-host interaction
- Lung-distal organ axis

Lung Microbiome - Methodologies

Sputum
Bronchoalveolar lavage
Bronchial brushings
Tracheal aspirate
Lung tissue

Sampling

Amplicon-based
Metagenome
Virome
Metatranscriptome
Metaproteome
Metabolome

Sequencing

DNA
RNA
Protein

Host
Metabolites
Metabolites
Immune cells and mediators

Profiling

Virus
Fungi
Bacteria

Lung Microbiome - Applications

<table>
<thead>
<tr>
<th>Disease</th>
<th>COPD</th>
<th>Asthma</th>
<th>Bronchiectasis</th>
<th>Cystic fibrosis</th>
<th>Idiopathic pulmonary fibrosis</th>
<th>Pneumonia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Haemophilus</td>
<td>Haemophilus</td>
<td>Pseudomonas</td>
<td>Pseudomonas</td>
<td>Haemophilus</td>
<td>Haemophilus</td>
</tr>
<tr>
<td></td>
<td>Moraxella</td>
<td>Moraxella</td>
<td>Haemophilus</td>
<td>Haemophilus</td>
<td>Moraxella</td>
<td>Acinetobacter</td>
</tr>
<tr>
<td></td>
<td>Streptococcus</td>
<td>Gemella</td>
<td>Veillonella</td>
<td>Veillonella</td>
<td>Streptococcus</td>
<td>Klebsiella</td>
</tr>
<tr>
<td></td>
<td>Gemella</td>
<td>Porphyromonas</td>
<td>Stenotrophomonas</td>
<td>Stenotrophomonas</td>
<td>Staphylococcus</td>
<td>Streptococcus</td>
</tr>
<tr>
<td></td>
<td>Granulicatella</td>
<td>Mogibacteriaceae</td>
<td>Enterobacteriaceae</td>
<td>Staphylococcus</td>
<td>Veillonella</td>
<td>Staphylococcus</td>
</tr>
<tr>
<td></td>
<td>Campylobacter</td>
<td>Aspergillus</td>
<td>Aspergillus</td>
<td>Penicillium</td>
<td>Stenotrophomonas</td>
<td>Veillonella</td>
</tr>
<tr>
<td></td>
<td>Prevotella</td>
<td>Cryptococcus</td>
<td>Cryptococcus</td>
<td>Scedosporium</td>
<td>Campylobacter</td>
<td>Leptotrichia</td>
</tr>
<tr>
<td></td>
<td>Candida</td>
<td>Cytomegalovirus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disease</th>
<th>COVID-19</th>
<th>Lung cancer</th>
<th>Lung transplantation-related</th>
<th>HIV</th>
<th>Tuberculosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic lung diseases</td>
<td>Enterobacteriaceae</td>
<td>Veillonella</td>
<td>Pseudomonas</td>
<td>Prevotella</td>
<td>Mycobacterium</td>
</tr>
<tr>
<td>Acute lung diseases</td>
<td>Bacteroides</td>
<td>Mycoplasma</td>
<td>Megasphaera</td>
<td>Veillonella</td>
<td>Porphyromonas</td>
</tr>
<tr>
<td>Other lung diseases</td>
<td>Lachnospiraceae</td>
<td>Burkholderia</td>
<td>Staphylococcus</td>
<td>Staphylococcus</td>
<td>Cupriavidus</td>
</tr>
<tr>
<td></td>
<td>Prevotella</td>
<td>Streptococcus</td>
<td>Streptococcus</td>
<td>Streptococcus</td>
<td>Streptococcus</td>
</tr>
<tr>
<td></td>
<td>Fusobacterium</td>
<td>Stenotrophomonas</td>
<td>Staphylococcus</td>
<td>Flavobacterium</td>
<td>Prevotella</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus</td>
<td>Abiotrophia</td>
<td>Corynebacterium</td>
<td>Candida</td>
<td>Candida</td>
</tr>
<tr>
<td></td>
<td>Enterobacteriaceae</td>
<td>Acidovorax</td>
<td>Aspergillus</td>
<td>Aspergillus</td>
<td>Aspergillus</td>
</tr>
<tr>
<td></td>
<td>Aneloviroidae</td>
<td>HPV</td>
<td>Aneloviroidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Redondoviridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disease</th>
<th>Taxonomy</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic lung diseases</td>
<td>Proteobacteria</td>
<td>Positive association with disease</td>
</tr>
<tr>
<td>Acute lung diseases</td>
<td>Firmicutes</td>
<td>Positive association with neutrophilic subtype</td>
</tr>
<tr>
<td>Other lung diseases</td>
<td>Bacteroidetes</td>
<td>Positive association with eosinophilic subtype</td>
</tr>
<tr>
<td></td>
<td>Actinobacteria</td>
<td>Negative association with disease</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fungi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Virus</td>
<td></td>
</tr>
</tbody>
</table>

Challenges

- Oral contamination
- Low microbial-to-host ratio
- Disease heterogeneity
- Microbiome-host interaction
- Microbiome manipulation
- Culturability

Possible solutions

- Sample quality control
- Oral sample cross-comparison
- Pre-sequencing host cell depletion
- High depth ‘Holo-biome’ sequencing
- Microbiome-pheno/endotype relations
- ‘Microbial-host’ multi-omic landscape
- Standard procedure for respiratory microbiome manipulation
- Culturomics

"iMeta" is an open-access Wiley partner journal and launched by scientists of the Chinese Academy of Sciences. iMeta aims to promote metagenomics, microbiome and bioinformatics development by publishing original researches, methods or protocols, and reviews. The goal is to publish highly quality papers (Top 10%, IF > 15) targeting broad audience. Unique features including video submission, reproducible analysis, figure polishing, APC waiver, and promotion by social media with 500,000 followers. The first issue will be released in March 2022.

Society: http://www.imeta.science
Publisher: https://onlinelibrary.wiley.com/journal/2770596x
Submission: https://mc.manuscriptcentral.com/imeta

office@imeta.science
iMetaScience
iMeta
iMetaScience
iMetaJournal