

Bacterial social interactions in synthetic *Bacillus* consortia enhance plant growth

Yan Liu^{1, 2#}, Baolei Jia^{2 #}, Yi Ren^{1#†}, Weibing Xun¹, Polonca Stefanic³, Tianjie Yang¹, Youzhi Miao¹, Nan Zhang¹, Yanlai Yao², Ruifu Zhang¹, Zhihui Xu^{1*}, Qirong Shen^{1*}, Ines Mandic-Mulec^{3*}

¹Nanjing Agricultural University
²Xianghu Laboratory
³University of Ljubljana
[†]Nanjing Normal University

Yan Liu, Baolei Jia, Yi Ren, Weibing Xun, Polonca Stefanic, Tianjie Yang, Youzhi Miao, et al. 2025. Bacterial social interactions in synthetic *Bacillus* consortia enhance plant growth. *iMeta* 4: e70053. <u>https://doi.org/10.1002/imt2.70053</u>.

Research Background and Objectives

Importance of the plant rhizosphere microbiome

- The rhizosphere microbiome, often referred to as the plant's "second genome" plays a vital role in plant growth, nutrient uptake, and overall health.
- The plant microbiome is considered the foundation of the next green revolution.
- PGPR are widely used as microbial inoculants to promote plant growth either directly or indirectly.

Challenges and issues: limited effectiveness of inoculants

• Microbial inoculants influence the plant microbiome through various mechanisms, including modulating community diversity, suppressing pathogens, and promoting beneficial microbes.

• Their effectiveness is affected by complex microbial social interactions, especially resource competition and cooperative behaviors.

• While synthetic microbial consortia offer enhanced functionality, their stability is influenced by interactions among member strains, and effective design strategies are still lacking. Research focus: social interactions and kin discrimination mechanisms in *Bacillus*

• The genus *Bacillus* exhibits complex social behaviors during root colonization, such as swarming and kin discrimination.

• Kin strains tend to merge and form mixed biofilms, while non-kin strains are more likely to repel each other.

• Establishing the links between community phylogenetic structure, social behavior, and plant growth-promoting functions remains a major research challenge.

Research objective: To elucidate how the PGPR strain *B. velezensis* SQR9 regulates social interactions and community functions within the rhizosphere *Bacillus* population, providing theoretical support for the ecological and rational design of synthetic *Bacillus* consortia.

Highlights

PGPR: Plant growth-promoting rhizobacteria

- *B. velezensis* SQR9 inoculation significantly enhanced cucumber plant growth and altered the structure of rhizosphere *Bacillus* and its related bacterial communities, promoting cooperation among closely related strains.
- Phylogenetically closer *Bacillus* strains exhibited increased social cooperation and increased metabolic niche overlap, enhancing community interactions.
- Consortia with MR strains exhibited superior plant growth-promoting effects, including increased plant height, dry weight, root colonisation, and production of IAA and siderophores.
- The study provides a framework for assembling *Bacillus* consortia with enhanced cooperation and improving the stability and effectiveness of microbial inoculants in agricultural applications.

Experimental Design

Figure 1. Experimental Design and Workflow

(A) Pot experiment; (B) High-throughput sequencing; (C) Analysis of relationships among phylogenetic relatedness, social interactions, carbon source utilization, and PGP activities of rhizosphere *Bacillus* strains; (D) Design of 30 HR and MR consortia; (E) Design of 300 HR and MR consortia. HR: High Relatedness; MR: Moderate Relatedness.

velezensis SQR9 altered the structure of the cucumber rhizosphere bacterial community

Figure 2. High-throughput sequencing analysis based on 16S rRNA and *gyrA* genes reveals the effect of SQR9 on the composition of the cucumber rhizosphere bacterial community

E gelezensis SQR9 enhances the compatibility and cooperation within the rhizosphere Bacillus community

niabensis

B. thuringiensis

arour

n=6

n=4

SS SQR9 treatment

n=2

Figure 3. SQR9 alters the distribution pattern of swarming confrontation phenotypes among rhizosphere Bacillus strains.

Moderately related (MR) consortia promote plant growth

Figure 4. Importance of carbon source competition and social interactions in the rational design of growth-promoting *Bacillus* consortia

Validation of consortium design strategy through increased richness and diversified combinations

Figure 5. Expanded validation of the design strategy and construction scheme for synthetic *Bacillus* consortia based on social interactions

Summary

- □ This study is the first to reveal that the application of the PGPR strain *B. velezensis* SQR9 can direct the rhizosphere bacterial community—especially *Bacillus* and its related taxa—toward a more cooperative trajectory.
- Based on the regulatory effect of SQR9 on the rhizosphere microbial community, MR Bacillus consortia were constructed and demonstrated superior plant growth-promoting effects in both hydroponic and soil-based systems.
- ❑ This study proposes incorporating social interactions and carbon source competition into the design of synthetic microbial consortia, providing a novel ecological framework for the intelligent assembly of *Bacillus* communities and the sustainable application of microbial products.

Yan Liu, Baolei Jia, Yi Ren, Weibing Xun, Polonca Stefanic, Tianjie Yang, Youzhi Miao, et al. 2025. Bacterial social interactions in synthetic *Bacillus* consortia enhance plant growth. *iMeta* 4: e70053. https://doi.org/10.1002/imt2.70053.

iMeta: Integrated metaomics to understand the biology, med and environment

WILEY

"<u>iMeta</u>" launched by iMeta Science Society in 2022, impact factor (IF) **23.8**, ranking top 107/21973 in world and 2/161 in the microbiology. It aims to publish innovative and high-quality papers with broad and diverse audiences. Its scope is similar to Cell, Nature, Science, Nature Biotechnology/Methods/Microbiology/Medicine/Food. Its unique features include video abstract, bilingual publication, and social media with 600,000 followers. Indexed by <u>SCIE/ESI</u>, <u>PubMed</u>, <u>Google Scholar</u> etc.

"*iMetaOmics*" launched in 2024, with a target IF>10, and its scope is similar to Nature Communications, Cell Reports, Microbiome, ISME J, Nucleic Acids Research, Briefings in Bioinformatics, etc.

"*iMetaMed*" launched in 2025, with a target IF>15, similar to Med, Cell Reports Medicine, eBioMedicine, eClinicalMedicine etc.

Society: <u>http://www.imeta.science</u>

Publisher: <u>https://wileyonlinelibrary.com/journal/imeta</u> iMeta: https://wiley.atyponrex.com/journal/IMT2

Submission: iMetaOmics: <u>https://wiley.atyponrex.com/journal/IMO2</u> iMetaMed: <u>https://wiley.atyponrex.com/journal/IMM3</u>

