Gut microbiota and tuberculosis

Yanhua Liu ^{1#}, Ling Yang ^{1, 2#}, Maryam Meskini ^{3, 4#}, Anjana Goel ^{5#}, Monique Opperman ^{6#}, Sagar Singh Shyamal ^{7#}, Ajay Manaithiya ^{8#}, Meng Xiao ^{9#}, Ruizi Ni ², Yajing An ², Mingming Zhang ², Yuan Tian ², Shuang Zhou ², Zhaoyang Ye ², Li Zhuang ², Linsheng Li ², Istuti Saraswat ⁵, Ankita Kar ¹⁰, Syed Luqman Ali ¹¹, Shakir Ullah ¹², Syed Yasir Ali ¹³, Shradha Kaushik ¹⁴, Tianmu Tian ¹⁵, Mingyang Jiao ¹⁶, Shujun Wang ¹⁷, Giulia Ghisleni ¹⁸, Alice Armanni ¹⁸, Sara Fumagalli ¹⁸, WenYu Wang ¹⁹, Chao Cao ²⁰, Maria Carpena ²¹, Miguel A. Prieto ^{201*}, Antonia Bruno ^{18*}, Chanyuan Jin ^{22*}, Hanqing Hu ^{15*}, Yuhang Zhang ^{23*}, Ilse du Preez ^{6*}, Ashok Aspatwar ^{8*}, Lingxia Zhang ^{1*}, Wenping Gong ^{1*}

¹ The Eighth Medical Center of PLA General Hospital; ² Graduate School, Hebei North University; ³ Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran; ⁴ Microbiology Research Center (MRC), Pasteur Institute of Iran; ⁵ Department of Biotechnology, GLA University; ⁶ North-West University; ⁷ Indian Institute of Technology (Banaras Hindu University); ⁸ Tampere University; ⁹ Chinese Academy of Sciences; ¹⁰ ICMR NHRP project-Assam Medical College; ¹¹ Department of Biochemistry, Abdul Wali Khan University Mardan; ¹² Department of Zoology, Abdul Wali Khan University Mardan; ¹³ Department of Pathology, Abdul Wali Khan University Mardan; ¹⁴ Institute of Engineering and Technology; ¹⁵ Beijing University of Information Science and Technology; ¹⁶ Peking University School and Hospital of Stomatology; ¹⁷ China Medical University; ¹⁸ University of Milano-Bicocca; ¹⁹ Beijing Anzhen Hospital, Capital Medical University; The First Affiliated Hospital of Ningbo University; ²¹ Universidade de Vigo; ²² Peking University School and Hospital of Stomatology; ²³ Institute of Clinical Pharmacology, Peking University First Hospital

Yanhua Liu, Ling Yang, Maryam Meskini, Anjana Goel, Monique Opperman, Sagar Singh Shyamal, et al. 2025. Gut microbiota and tuberculosis. *iMeta* 4: e70054. <u>https://doi.org/10.1002/imt2.70054</u>.

Graphical Abstract

Highlights

- Bidirectional gut microbiota (GM)-tuberculosis (TB) interaction reveals a dynamic interplay where *Mycobacterium tuberculosis* infection disrupts GM, while GM dysbiosis exacerbates TB progression by modulating host immunity.
- Technological innovation integrates next-generation sequencing, metagenomics, and artificial intelligence (AI) to unravel complex GM-TB relationships, enabling predictive modeling and precision medicine approaches.
- Regarding GM as a diagnostic/therapeutic target, researchers propose GM modulation as a novel strategy to enhance anti-TB drug efficacy, mitigate side effects, and develop microbiome-based diagnostics for TB susceptibility and prognosis.
- A comprehensive research framework systematically synthesizes seven key areas—from GM-immune crosstalk to recurrence mechanisms—providing a roadmap for future TB management strategies and vaccine optimization.

Introduction

♣ Global tuberculosis report 2024. Geneva: WHO; 2024.

Marsland BJ. et al. Ann Am Thorac Soc. 2015.12, S150-156

Bidirectional Effects Between GM Dynamics and TB Progression

Figure 1 Relationship between GM dysbiosis and TB progression

Figure 2 Comparative characterization of healthy versus pathogenic gut microbiota states

110

Bidirectional interactions between ATD and GM

Figure 3 Bidirectional interactions between ATD and GM, and their impact on GM homeostasis.

Impact of ATD on GM

Induces intestinal inflammation, destroys the gut barrier, disrupts metabolism, and directly kills bacteria \rightarrow damage to the composition and function of GM.

Influence of GM on ATD metabolism

Abnormal drug metabolism and reduced bioavailability \rightarrow decreased efficacy; impaired immune regulation and increased hepatotoxicity \rightarrow exacerbated toxicity.

Intervention strategies

Probiotics/prebiotics, magnesium isoglycyrrhinate (MgIG), fecal microbiota transplantation (FMT) \rightarrow anti - inflammatory, repair gut barrier, restore microbiome balance.

The Interaction Between GM and anti-TB drugs (ATD)

Figure 4 Multimodal regulation of host immunity by the GM

Gut Microbiota Regulates Immunity via Metabolites

- Healthy GM Functions: Maintains mucosal barrier and immune homeostasis
- Metabolite Effects:

SCFAs regulate macrophage activity & Treg differentiation to suppress hyperinflammation Polysaccharide A modulates B/T-cell immune responses

Dysbiosis Exacerbates TB Pathology

◆ Immune Dysregulation:

Th1/Th2/Th17/Treg imbalance \rightarrow Impaired anti-MTB immunity

♦ Gut-Lung Axis:

Gut dysbiosis triggers systemic inflammation $\rightarrow \uparrow MTB$ infection/relapse risk via gut-lung axis

GM as a Potential Target for Diagnosis and Treatment of TB

The Pathogenic Role of GM

GM is a key regulatory factor in the development of TB, and its imbalance is closely related to disease progression, serving as a potential new target for diagnosis and treatment.

Diagnostic Potential

Changes in microbial composition, fungal-bacterial interactions, and metabolite profiles participate in TB pathology through systemic circulation, offering early diagnostic value.

Targeted Treatment Strategy

Probiotics, prebiotics, synbiotics, and FMT (Fecal Microbiota Transplantation) regulate the homeostasis of the microbiota, reduce complications from treatment, and serve as a targeted treatment strategy for TB. The mechanism includes restoring the intestinal barrier and improving immune function.

Core Value

GM provides a dual intervention approach for the accurate diagnosis and treatment of TB, promoting innovation in the diagnosis and treatment of infectious diseases.

Figure 5 GM as a diagnostic and therapeutic target in TB

Application of Multi-omics and AI Technologies in GM-TB Research

Figure 6 Overview of the next-generation sequencing (NGS) workflow and its applications.

Figure 7 Applications of NGS in GM-TB research.

Application of Multi-omics and AI Technologies in GM-TB Research

Figure 8 An overview of the host-microbe interactions and proteomics in TB progression

Figure 9 Overview of the general metabolomics workflow

Application of Multi-omics and AI Technologies in GM-TB Research

Figure 10 Applications of AI/ML in microbiome research: from data collection to implementation

Current Challenges and Future Directions in GM-TB Research

Figure 12 Challenges and Limitations in GM-TB Studies

Current Challenges and Future Directions in GM-TB Research

Figure 13 Future directions and research priorities in GM-TB studies

Conclusion

Gut microbiome - tuberculosis interaction pattern

Tuberculosis patients have reduced gut microbiome diversity, altered specific taxa, and functional network imbalances linked to disease progression and prognosis.

Mechanistic insights

The gut microbiome regulates host immunity, affects Mycobacterium tuberculosis metabolism, and is involved in drug responses, with immune modulation being central.

Translational prospects

Microbiome - based diagnostics can improve accuracy, microbiome modulation can enhance therapeutic effects and reduce side effects, and probiotic interventions have preventive potential.

Technological frontiers and challenges

While NGS and AI/ML technologies drive multi - omics integration and predictive model development, issues like sample heterogeneity, geographic biases, and insufficient mechanistic validation require large - scale prospective studies to accelerate clinical translation.

Yanhua Liu, Ling Yang, Maryam Meskini, Anjana Goel, Monique Opperman, Sagar Singh Shyamal, et al. 2025. Gut microbiota and tuberculosis. *iMeta* 4: e70054. <u>https://doi.org/10.1002/imt2.70054</u>.

iMeta: Integrated metaomics to understand the biology, med and environment

WILEY

"<u>iMeta</u>" launched by iMeta Science Society in 2022, impact factor (IF) **23.8**, ranking top 107/21973 in world and 2/161 in the microbiology. It aims to publish innovative and high-quality papers with broad and diverse audiences. Its scope is similar to Cell, Nature, Science, Nature Biotechnology/Methods/Microbiology/Medicine/Food. Its unique features include video abstract, bilingual publication, and social media with 600,000 followers. Indexed by <u>SCIE/ESI</u>, <u>PubMed</u>, <u>Google Scholar</u> etc.

"*iMetaOmics*" launched in 2024, with a target IF>10, and its scope is similar to Nature Communications, Cell Reports, Microbiome, ISME J, Nucleic Acids Research, Briefings in Bioinformatics, etc.

"*iMetaMed*" launched in 2025, with a target IF>15, similar to Med, Cell Reports Medicine, eBioMedicine, eClinicalMedicine etc.

Society: <u>http://www.imeta.science</u>

Publisher: <u>https://wileyonlinelibrary.com/journal/imeta</u> iMeta: https://wiley.atyponrex.com/journal/IMT2

Submission: iMetaOmics: <u>https://wiley.atyponrex.com/journal/IMO2</u> iMetaMed: https://wiley.atyponrex.com/journal/IMO2

