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Bidirectional gut microbiota (GM)-tuberculosis (TB) interaction reveals a dynamic
interplay where Mycobacterium tuberculosis infection disrupts GM, while GM
dysbiosis exacerbates TB progression by modulating host immunity.
Technological innovation integrates next-generation sequencing, metagenomics,
and artificial intelligence (Al) to unravel complex GM-TB relationships, enabling
predictive modeling and precision medicine approaches.

Regarding GM as a diagnostic/therapeutic target, researchers propose GM
modulation as a novel strategy to enhance anti-TB drug efficacy, mitigate side
effects, and develop microbiome-based diagnostics for TB susceptibility and
prognosis.

A comprehensive research framework systematically synthesizes seven key
areas—from GM-immune crosstalk to recurrence mechanisms—providing a

roadmap for future TB management strategies and vaccine optimization.




Introduction

TB: leading infectious killer Gut-Lung axis

E. TH Allergens E .sE
H L Environmental microbes Viruses/Bacteria Dls
p— Unpasteurized milk Cigarette Smoke

High-fiber diet Antibiotics

Nommnal epithelial cell

=0

AProtecbacterial
AFirmicutes :
=Actinobacteria |
YBacteroidetes |

Protecbacteria :

N =, 2~ Firmicutes |
QT Philj Actincbacteria |
ndit

| 1
. | \/l'
| Pakistan l/n

| o]
|\ y Bt i e G Rty EPONCINS G o e e S U R NG IR ol ™ S0 v o e o diG 0 s SO RERTRE IR N
ol ¥ i = AR
/ b 2 . ARy
Number of g o India ‘ -/ J "etabolites | Bacterial Bacterial | Metabolites
incident cases \ \ S (eg. SCFA)|seeding seeding | (eg. SCFA)
100 000 = \ Indonesia — /,n :Pjrae_ot?asteng _______________ :M = :A_PFot_e;bgas;a _______________ :
P / / |Firmicutes nea, : 1AFirmicutes h
500 000 i ic \ ° 1Actincbacteria e Y Y00 1 I=Actinobacteria N
Democratic Republic \ / / 1Bacteroidetes % / % 1 | YBacteroidetes # 1
of the Congo K ‘ 1 g Z | | - \
1000 000 ) / : i i z i
L | | - z ;
\Lzl‘ / ! 1 ! 1
S ' 1 ! 1
1 1
2000 000 o / | ¥ ! !
! 1 1 1
1 e '

b
D
Ef v

New Tb Cases Tb-associated Deaths Co-infection Of HIV-MTBC Intestinal-pulmonary cross-talk during respiratory health and disease
10.7 Million 1.25 Million 161,000 deaths

& Global tuberculosis report 2024. Geneva: WHO, 2024. & Marsland BJ. et al. Ann Am Thorac Soc. 2015.12, S150-156



Bidirectional Effects Between GM Dynamics and TB Progression
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Bidirectional interactions between ATD and GM
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Figure 3 Bidirectional interactions between ATD
and GM, and their impact on GM homeostasis.

€ Impact of ATD on GM

Induces intestinal inflammation, destroys the gut barrier,
disrupts metabolism, and directly kills bacteria—
damage to the composition and function of GM.

€ Influence of GM on ATD metabolism

Abnormal drug metabolism and reduced
bioavailability— decreased efficacy; impaired immune
regulation and increased hepatotoxicity— exacerbated
toxicity.

€ Intervention strategies

Probiotics/prebiotics, magnesium isoglycyrrhinate
(MglG), fecal microbiota transplantation (FMT)— anti -
inflammatory, repair gut barrier, restore microbiome
balance.



The Interaction Between GM and anti-TB drugs (ATD)
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Figure 4 Multimodal regulation of host immunity by the GM

Gut Microbiota Regulates
\ l Immunity via Metabolites

@ Healthy GM Functions:
Maintains mucosal barrier and immune
homeostasis

@ Metabolite Effects:
SCFAs regulate macrophage activity &
Treg differentiation to suppress
hyperinflammation
Polysaccharide A modulates B/T-cell
immune responses

Dysbiosis Exacerbates TB
Pathology

@ Immune Dysregulation:
Th1/Th2/Th17/Treg imbalance —
Impaired anti-MTB immunity

@ Gut-Lung Axis:

Gut dysbiosis triggers systemic
inflammation — tMTB
infection/relapse risk via gut-lung axis



GM as a Potential Target for Diagnosis and Treatment of TB
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Figure 5 GM as a diagnostic and therapeutic target in TB

€ The Pathogenic Role of GM
GM is a key regulatory factor in the development of TB,
and its imbalance is closely related to disease
progression, serving as a potential new target for
diagnosis and treatment.

€ Diagnostic Potential

Changes in microbial composition, fungal-bacterial
interactions, and metabolite profiles participate in TB
pathology through systemic circulation, offering early
diagnostic value.

€ Targeted Treatment Strategy
Probiotics, prebiotics, synbiotics, and FMT (Fecal
Microbiota Transplantation) regulate the homeostasis of
the microbiota, reduce complications from treatment, and
serve as a targeted treatment strategy for TB. The
mechanism includes restoring the intestinal barrier and
improving immune function.

& Core Value

GM provides a dual intervention approach for the
accurate diagnosis and treatment of TB, promoting
innovation in the diagnosis and treatment of infectious
diseases.



Application of Multi-omics and Al Technologies in GM-TB Research
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Application of Multi-omics and Al Technologies in GM-TB Research

Figure 8 An overview of the host-microbe interactions and
proteomics in TB progression
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Figure 10 Applications of Al/ML in microbiome
research: from data collection to implementation

Figure 11 Integrative multi-omics framework for
investigating GM-TB interactions
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Current Challenges and Future Directions in GM-TB Research

1. Inherent Limitations of Observational Designs

¢ Bias

# Causal inference 4 Analytical complexity
€ RCTs 4 Computational methods

€ Standardization
2. Small Sample Sizes
& Statistical power

S \Z
€ Generalizability .’ls QQ € Humanized models
€ Large studies € Multi-omics data

€ Human studies

3. Significance of Population Diversity

° ® 6. Integration of Multi-Omics Data

°
€ Genetic variation 'nln'
4 Environmental factors

& Lifestyle

¢ Metabolomics
4 Proteomics

@ Data integration
Challenges & Limitations

Figure 12 Challenges and Limitations in GM-TB Studies



Current Challenges and Future Directions in GM-TB Research

1 Vaccine Efficacy Modulation by GM 5. Exploration of GM’s Link to TB Recurrence
€ Vaccine efficacy, Immune response, probiotics/prebiotics € Recurrence risk, LTBI, predictive markers
A
, , , , , 6. Advanced Multi-Omics Integration Methods
p 2. Preventative Strategies Through Microbiome Regulation - . o .
4 Multi-omics data, algorithms, bioinformatics tools
€ Microbial communities, probiotics, FMT
A
7. Standardization of Microbiome Analysis Protocols
3. Microbiome-Based Diagnostics € Standardization, sample processing, data analysis
€ Biomarkers, validation, rapid diagnostics
4. Treatment Optimization Influenced by GM Dynamics é

€ Treatment optimization, personalized treatment, ATD

Future Research Directions

Figure 13 Future directions and research priorities in GM-TB studies



Conclusion

€4 Gut microbiome - tuberculosis interaction pattern
Tuberculosis patients have reduced gut microbiome diversity, altered specific taxa, and functional network imbalances linked to
disease progression and prognosis.

€ Mechanistic insights
The gut microbiome regulates host immunity, affects Mycobacterium tuberculosis metabolism, and is involved in drug responses,
with immune modulation being central.

€ Translational prospects
Microbiome - based diagnostics can improve accuracy, microbiome modulation can enhance therapeutic effects and reduce side
effects, and probiotic interventions have preventive potential.

€ Technological frontiers and challenges
While NGS and Al/ML technologies drive multi - omics integration and predictive model development, issues like sample
heterogeneity, geographic biases, and insufficient mechanistic validation require large - scale prospective studies to accelerate
clinical translation.

Yanhua Liu, Ling Yang, Maryam Meskini, Anjana Goel, Monique Opperman, Sagar Singh Shyamal, et al. 2025.
Gut microbiota and tuberculosis. iMeta 4: ¢70054. https://doi.org/10.1002/imt2.70054.
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