

Neoadjuvant immunotherapy driven bladder preservation for muscle invasive bladder cancer

Jiao Hu^{1,2,17,#}, Luzhe Yan^{1,2,17,#}, Jinhui Liu^{1,2,17,#}, Minfeng Chen^{1,2,17,#}, Yunbo He^{1,2,17,#}, Benyi Fan^{1,2,17}, Bo Peng³, Long Wang⁴, Weibin Hou⁴, Chao Li⁴, Bosen You⁵, Meng Zhang⁶, Wenze Li^{7,17}, Jiaxing Wang⁷, Hongzhou Cai⁸, Shenglin Gao⁹, Yang Liu¹⁰, Dingshan Deng^{1,2,17}, Huihuang Li^{1,2,17}, Guanghui Gong¹¹, Jiansheng Tang¹², Chengyong Wang¹³, Xiaofeng Yang¹⁴, Liang Wei¹⁴, Guangzheng Lin¹⁵, Ruizhe Wang^{1,2,17}, Xiao Guan^{1,2,17}, Shiyu Tong^{1,2,17}, Yangle Li^{1,2,17}, Wei He^{1,2,17}, Zhiyong Cai^{1,2,17}, Peihua Liu^{1,2,17}, Yu Gan^{1,2,17}, Yu Cui^{1,2,17}, Yuanqing Dai^{1,2,17}, Yi Cai^{1,2,17}, Zefu Liu^{1,2,17}, Jiatong Xiao^{1,2,17}, Zhenyu Nie^{1,2,17}, Zhenyu Ou^{1,2,17}, Jinbo Chen^{1,2,17}, Xi Guo¹⁶, Xiongbing Zu^{1,2,16,17,*}

1Department of Urology, Xiangya Hospital, Central South University, Changsha, China 2National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China 3Department of Urology, Zhangjiajie People's Hospital, Zhangjiajie, China 4Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China 5Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China 6Department of Urology, The First Affiliated Hospital of Anhui Medical University, China 7Department of Urology, The First People's Hospital of Xiangtan City, Xiangtan, China 8Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, China 9Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China 10Department of Urology and Guangdong Key Lab of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China 11Department of Pathology, Xiangya Hospital, Central South University, Changsha, China 12Department of Urology, The Affiliated Hospital of Xiangnan University, Xiangnan University, Chenzhou, China 13Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Anhui, Bengbu, China 14Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China 15Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China 16Department of Urology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, China 17Furong Laboratory, Changsha, China

Jiao Hu, Luzhe Yan, Jinhui Liu, Minfeng Chen, Yunbo He, Benyi Fan, Bo Peng, et al. 2025. Neoadjuvant immunotherapy driven bladder preservation for muscle invasive bladder cancer. *iMeta* 4: e70063. <u>https://doi.org/10.1002/imt2.70063</u>

Background

Age-Standardized Rate (World) per 100 000, Incidence, Both sexes, in 2022

Bladder cancer is one of the ten most common cancers worldwide.

Radical cystectomy significantly impacts patients' quality of life.

- In recent years, multimodal treatment approaches aimed at bladder preservation have gained increasing attention.
- Bladder-preserving strategies based on neoadjuvant immunotherapy have shown promising potential.

Nature reviews Urology. 2011, 8(11): 631-42.

Highlight

- Bladder-preserving therapy driven by neoadjuvant immunotherapy for muscleinvasive bladder cancer demonstrates significant clinical application potential in the field of bladder-sparing treatments.
- A systematic and feasible immune therapy-based bladder-sparing treatment protocol has been proposed.
- This is the first article in the field of bladder-sparing treatment that explores the tumor microenvironment using single-cell sequencing to identify sensitive patients.

Study Design and Patient Inclusion and Exclusion Criteria

Figure 1. (A) Patient selection process.

Efficacy comparison of Neoimmu-CMT VS TMT / NAC-CMT

Figure 1. (B) Neoimmu-CMT demonstrates superiority over NAC-CMT; (C) Neoimmu-CMT shows comparability to TMT.

-

Outcome

Cox Analysis of Efficacy-Related Factors in Neoimmu-CMT

Variable	Univariable Cox DFS				Multivariable Cox DFS					Univariable Cox BI-DFS				Multivariable Cox BI-DFS			
	HR	95% Lower	6 CI Upper	P value	HR	959 Lower	% CI Upper	Variable P value	HR	95% Lower	GCI Upper	P value	HR	98 Lower	5% CI Upper	P value	
Neoadjuvant therapy									Neoadjuvant therapy								
Immunotherapy	Reference				Reference				Immunotherapy	Reference				Reference			
Chemoimmunotherapy	0.660	0.222	1.967	0.456	0.769	0.255	2.323	0.642	Chemoimmunotherapy	1.313	0.313	5.505	0.710	1.153	0.262	5.086	0.851
ADC combined with Immunotherap	0.967	0.189	4.936	0.968	1.283	0.224	7.359	0.780	ADC combined with Immunotherap	0.000	0.000	Inf	0.999	0.000	0.000	Inf	0.999
Clinical T stage									Clinical T stage								
Low stage	Reference				Reference				Low stage	Reference				Reference			
High stage	2.463	0.873	6.953	0.089	3.238	1.036	10.118	0.043	High stage	6.835	1.619	28.859	0.009	7.526	1.557	36.379	0.012
Response to neoadjuvant therapy									Response to neoadjuvant therapy								
cCR	Reference				Reference				cCR	Reference				Reference			
cPR	9.105	2.565	32.325	0.001	9.657	2.697	34.583	<0.001	cPR	15.888	1.950	129.462	0.010	20.016	2.360	169.787	0.006
Smoking status									Smoking status								
Non-smoker	Reference								Non-smoker	Reference							
Smoker	1.840	0.628	5.396	0.266					Smoker	5.942	0.729	48.420	0.096				
Tumor associated hydronephrosis									Tumor associated hydronephrosis								
No	Reference				Reference				No	Reference				Reference			
Yes	1.373	0.179	10.547	0.761	1.120	0.139	9.052	0.915	Yes	0.000	0.000	Inf	0.998	0.000	0.000	Inf	0.999
Tumor number									Tumor number								
Single	Reference								Single	Reference							
Multiple	1.203	0.406	3.567	0.739					Multiple	0.940	0.186	4.754	0.940				
Age	1.034	0.977	1.095	0.247					Age	1.047	0.968	1.132	0.252				
BMI	0.995	0.843	1.174	0.950					BMI	0.992	0.793	1.240	0.943				
Gender									Gender								
Male	Reference								Male	Reference							
Female	0.955	0.269	3.386	0.943					Female	0.692	0.139	3.431	0.652				
Histology variants									Histology variants								
UC	Reference								UC	Reference							
Others	1.956	0.438	8,728	0.379					Others	1.542	0.189	12.608	0.686				
KPS	0.998	0.927	1 076	0.967					KPS	0.960	0.893	1.032	0.265				
Tumor diameter	1.011	0.972	1.051	0.597					Tumor diameter	1.017	0.965	1.073	0.524				

Table S3. Prognostic factors of DFS.**Table S4.** Prognostic factors of BI-DFS.

Baseline Characteristics Comparison in Neoimmu-CMT

Variable	Total $(n = 0.7)$	NICB.ADC (n =	NICB.NAC (n =	NICB (n =	P value	
	10tal (11 – 97)	23)	39)	35)		
Age, Mean ± SD	66.64 ± 9.43	66.83 ± 8.09	63.92 ± 7.80	69.54 ±	0.036	
BMI, Mean ± SD	23.33 ± 2.96	24.11 ± 2.88	23.65 ± 3.12	22.46 ± 2.67	0.079	
KPS, Mean ± SD	97.58 ± 6.89	98.48 ± 4.38	97.82 ± 6.47	96.71 ± 8.57	0.614	
Gender, n(%)					0.596	
Female	18 (18.56)	3 (13.04)	9 (23.08)	6 (17.14)		
Male	79 (81.44)	20 (86.96)	30 (76.92)	29 (82.86)		
Smoking status, n(%)					0.141	
Nonsmoker	50 (51.55)	16 (69.57)	18 (46.15)	16 (45.71)		
Smoker	47 (48.45)	7 (30.43)	21 (53.85)	19 (54.29)		
Tumor associated						
hydronephrosis, n(%)					0.003	
No	89 (91.75)	17 (73.91)	38 (97.44)	34 (97.14)		
Yes	8 (8.25)	6 (26.09)	1 (2.56)	1 (2.86)		
Tumor number, n(%)					<.001	
Multiple	35 (36.08)	16 (69.57)	10 (25.64)	9 (25.71)		
Single	62 (63.92)	7 (30.43)	29 (74.36)	26 (74.29)		

Table S5. Baseline characteristics of patients in the immunotherapy group.

Immune Phenotype and Biomarker Analysis

Figure 2. (A) Representative images of three immune phenotypes were displayed; (B) The associations between immune phenotypes and Neoimmu-CMT outcomes; (C) Differences in the expression of CD8, GZMB, and PD-L1 between bladder preservation success and failure groups; (D) Representative images of GZMB and PD-L1 staining were displayed.

Analysis of Tumor Microenvironment Cellular Composition

Figure 2. (E) UMAP plot of single cells profiled in the presenting work. All patients received Neoimmu-CMT based on neoadjuvant tislelizumab treatment; (F) Histogram indicating the counts and proportions of main cell types between groups (all cells).

Analysis of Tumor Microenvironment Cell Subpopulation Distribution

Figure 2. (G) UMAP plot of subgroups of T/NK cells; (H) Histogram indicating the counts and proportions of main cell types between groups (T/NK cells).

Analysis of Tumor Microenvironment Cell Subpopulation Distribution

Figure 2. (I) UMAP plot of subgroups of fibroblast cells; (J) Marker genes of each subcluster and cell types; (K) Histogram indicating the counts and proportions of main cell types between groups (fibroblasts).

Summary

Neoimmu-CMT demonstrates significantly better bladder-preserving efficacy in MIBC patients compared to traditional NAC-CMT, and shows comparable efficacy to conventional TMT with fewer side effects.

Bladder-preserving outcomes based on different neoadjuvant immunotherapy regimens are similar among patients achieving clinical complete or partial response.

□ The distribution and functional activity of CD8+ T cells in the tumor microenvironment may serve as important biomarkers for predicting treatment response.

In patients with treatment failure, increased fibroblasts, reduced NK and T cells, particularly elevated inflammatory cancer-associated fibroblasts, are closely associated with poor prognosis.

Jiao Hu, Luzhe Yan, Jinhui Liu, Minfeng Chen, Yunbo He, Benyi Fan, Bo Peng, et al. 2025. Neoadjuvant immunotherapy driven bladder preservation for muscle invasive bladder cancer. *iMeta* 4: e70063. <u>https://doi.org/10.1002/imt2.70063</u>

iMeta: Integrated metaomics to understand the biology, med and environment

WILEY

"<u>iMeta</u>" launched in 2022 by iMeta Science Society, impact factor (IF) **33.2**, ranking top 65/22249 in world and 2/161 in the microbiology. It aims to publish innovative and high-quality papers with broad and diverse audiences. Its scope is similar to Cell, Nature Biotechnology/Methods/Microbiology/Medicine/Food. Its unique features include video abstract, bilingual publication, and social media with 600,000 followers. Indexed by <u>SCIE/ESI</u>, <u>PubMed</u>, <u>Google Scholar</u> etc.

"*iMetaOmics*" launched in 2024, with a target IF>10, and its scope is similar to Nature Communications, Cell Reports, Microbiome, ISME J, Nucleic Acids Research, Briefings in Bioinformatics, etc.

"*iMetaMed*" launched in 2025, with a target IF>15, similar to Med, Cell Reports Medicine, eBioMedicine, eClinicalMedicine etc.

Society: <u>http://www.imeta.science</u>

Publisher: <u>https://wileyonlinelibrary.com/journal/imeta</u> iMeta: https://wiley.atyponrex.com/journal/IMT2

Submission: iMetaOmics: <u>https://wiley.atyponrex.com/journal/IMO2</u> iMetaMed: <u>https://wiley.atyponrex.com/journal/IMM3</u>

