Quantifying cellular malignancy by tumor micro- environment measurement with multimodal fusion Wencan Zhu^{1,2,3#}, Hui Tang^{1,#*}, Xiangtian Yu^{7#}, Hua Chai¹, Jin Huang⁸, Jie Xu⁹, Tao Zeng^{4,5,10*} #### and Luonan Chen^{6*} ¹ School of Mathematics, Foshan University, Foshan 528000, China ² Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany ³ Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg 69120, Germany ⁴ Guangzhou National Laboratory, Guangzhou 510000, China ⁶ School of Mathematical Sciences and School of AI, Shanghai Jiao Tong University, Shanghai 200240, China ⁷ Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China. ⁸ Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200233, China 9 Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China. ¹⁰ Bioland Laboratory, Guangzhou 510000, China. Wencan Zhu, Hui Tang, Xiangtian Yu, Hua Chai, Jin Huang, Jie Xu, Tao Zeng, et al. 2025. Quantifying cellular malignancy by tumor micro-environment measurement with multimodal fusion. *iMeta* 4: e70068. https://doi.org/10.1002/imt2.70068 # (,) #### Introduction #### Validation & Accuracy (single cell RNAseq) #### Validation & Accuracy (spatial transcriptomics) ### **Biological Insights** #### **Early Malignant Subpopulation Discovery** #### Identification of **Tumor MUC2+** subpopulation **Experimental validation** # (,) ## **Summary** - □ SCTP provides a multimodal framework to quantify malignancy at high resolution. - □ Achieves high classification accuracy across both single-cell and spatial transcriptomics datasets. - ☐ Enables discovery of early malignant subpopulations with spatial validation - ☐ Availability: https://github.com/ztpub/SCTP Wencan Zhu, Hui Tang, Xiangtian Yu, Hua Chai, Jin Huang, Jie Xu, Tao Zeng, et al. 2025. Quantifying cellular malignancy by tumor micro-environment measurement with multimodal fusion. *iMeta* 4: e70068. https://doi.org/10.1002/imt2.70068 #### iMeta: To be top journals in biology and medicine ## WILEY "iMeta" launched in 2022 by iMeta Science Society, impact factor (IF) 33.2, ranking top 65/22249 in world and 2/161 in the microbiology. It aims to publish innovative and high-quality papers with broad and diverse audiences. Its scope is similar to Cell, Nature Biotechnology/Methods/Microbiology/Medicine/Food. Its unique features include video abstract, bilingual publication, and social media with 600,000 followers. Indexed by SCIE/ESI, PubMed, Google Scholar etc. "iMetaOmics" launched in 2024, with a target IF>10, and its scope is similar to Nature Communications, Cell Reports, Microbiome, ISME J, Nucleic Acids Research, Briefings in Bioinformatics, etc. "iMetaMed" launched in 2025, with a target IF>15, similar to Med, Cell Reports Medicine, eBioMedicine, eClinicalMedicine etc. Society: http://www.imeta.science Publisher: https://wileyonlinelibrary.com/journal/imeta iMeta: https://wiley.atyponrex.com/journal/IMT2 Submission: iMetaOmics: https://wiley.atyponrex.com/journal/IMO2 iMetaMed: https://wiley.atyponrex.com/journal/IMM3 Update 2025/7/6