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Introduction

® the classical lysogenic-lytic switch of prophage relies on the bacterial SOS pathway

® recently, more SOS pathway-independent induction of prophages has been reported

® induction experiments using MMC on environmental microorganisms have shown highly variable
induction rates, with widespread insensitivity
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Figure 1(A) Schematic diagram of the currently known lysogenic-lytic switch
mechanism in temperate phages.

Limitation: due to the lack of specialized tools for determining prophage induction

modes, the distribution proportions and genomic characteristics of SOS-
independent prophages (SiPs) remain largely unexplored
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® Develop a novel bioinformatics tool PSOSP that
predicts prophages induction modes;

Website:https://vee-lab.situ.edu.cn/PSOSP/

Github:https://github.com/mujiezhang/PSOSP

® Identify 11,806 SiPs by applying PSOSP to 49,333
complete bacterial genomes;

Uncover that SiPs and SdPs exhibit distinct
genomic and host traits, suggesting the potential
for mutual conversion between certain SiP and SdP
groups;

Refine the conventional understanding of
temperate phage induction mechanisms and
provide novel tools and insights for exploring the

lysogenic-lytic switch of phages

uv MMC




Result 1: HI reliably predicts LexA binding potential

® The workflow of PSOSP:

(1) scanning the host genome to identify LexA protein and canonical SOS boxes (CSBs) located upstream of the /exA gene;
(2) identifying potential SOS boxes (PSBs) across bacterial genomes, calculating the Heterology Index (H/) for each PSB and establishing classification thresholds (H/, and HI,) via

Mean Shift clustering results;
(3) scanning PSBs within prophage promoter regions and determining of the minimum HI (Hl,;,);
(4) evaluating the ability of LexA binding to prophage promoter regions by comparing HI,,;,, with thresholds (H/; and Hl,), and subsequently classifying the induction modes of

prophage
® The binding interactions between previously reported LexA protein with PSBs (n = 24) in E. coli K12 (as documented by Lewis et al.)

could be precisely predicted based on H/
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Result 2: PSOSP: determining the regulatory mode of prophages based on H/

® The validation of prophage SW1 in Shewanella piezotolerans WP3

Table S4.Experimentally validated induction-mode

bacteriophages and hosts in this study.
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Result 3: Systematic analysis of SiPs and SdPs in bacterial genomes
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Figure 2. Widespread existence of SiPs and the comparison between SiPs and SdPs
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Figure 2. Widespread existence of SiPs and the comparison between SiPs and SdPs



Summary

1 We developed a novel bioinformatics tool PSOSP to predict prophage induction modes. PSOSP
was experimentally validated to accurately distinguish SdPs from SiPs.

L We discovered that SiPs were widely distributed within bacterial genomes and exhibited distinct
genomic features compared to the more well-studied SdPs. Correspondingly, the hosts of these
two prophage types are hypothesized to differ in their physiological characteristics.

[ These PSOSP-enabled findings provide not only novel insights into diverse induction mechanisms
but also a critical methodology for future studies on phage-host interactions and prophage
isolation strategies.
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O PSOSP website: https://vee-lab.sjtu.edu.cn/PSOSP/ l :
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