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Introduction



Highlights

• Gut microbiota and circulating metabolites display stage-specific alterations across 

NCA, sCAD, and ACS, underscoring the gut–heart axis in CAD progression.

• ACS-specific microbial and metabolic signatures were identified and validated in a 

recovery cohort, demonstrating partially reversible, stage-specific shifts.

• Multi-omics machine learning models accurately stratified CAD subtypes, 

surpassing the predictive power of clinical risk factors alone.



Study design and baseline characteristics of the cohort 

Figure 1. Overview of study workflow and participant cohort. No significant intergroup differences in lifestyle or diet were observed.



Overall gut microbiome profiles in CAD

Figure 2. Comprehensive analysis of gut microbiota changes from NCA to ACS

• Diversity: No significant difference in Shannon diversity; ACS patients had significantly higher Simpson diversity.

• Community structure: Significant separation among three groups at the species level; at the pathway level, only NCA vs 

sCAD was significant, while comparisons involving ACS did not reach significance.

• Functional taxa: ACS enriched in pro-inflammatory, neurotransmitter-producing, oral-origin, and mucin-degrading species; 

P/B ratio decreased.



Overall gut microbiome profiles in CAD

Figure 2. Comprehensive analysis of gut microbiota 

changes from NCA to ACS

• Characteristic shifts: Pro-inflammatory taxa 

such as Streptococcus spp. increased, while 

barrier-supporting/anti-inflammatory taxa 

including Lachnospiraceae spp. and 

Clostridium spp. decreased.

• Pathways: ACS enriched in fatty acid and 

ketogenesis, phenol and formaldehyde 

metabolism, and mevalonate-related pathways.



Plasma metabolomic and lipidomic profiles in CAD

Figure 3. Metabolomic and lipidomic 

profiles associated with CAD progression

• Metabolite shifts: Clear separation 

among NCA, sCAD, and ACS based 

on metabolite profiles.

• ACS features: Elevated organic 

acids, carboxylic acids, 

phenylpropanoic derivatives; 

reduced amino acids and 

neurotransmitter-related metabolites.

• Lipid changes: Increased 

triglycerides and sphingolipids; 

decreased phospholipids and fatty 

acids.



Plasma metabolomic and lipidomic profiles in CAD

Figure 3. Metabolomic and lipidomic profiles associated with CAD progression

• Pathway enrichment: ACS enriched in amino acid and carbohydrate metabolism pathways.



ACS-specific microbial and metabolic characteristics
Figure 4. ACS-specific microbial and 

metabolic characteristics

• Microbial taxa: Elevated Streptococcus 

spp., Bifidobacterium spp.; 

decreased Clostridium 

spp. and Desulfovibrio spp.

• Pathways: Enrichment of ketogenesis, 

fatty acid metabolism, and bile acid 

biosynthesis in ACS.

• Metabolites: Increased 2-

hydroxybutyrate, phenylalanine and 

derivatives, succinate; decreased lysine 

and vitamin A.

• Lipid profiles: Elevated diacylglycerols 

and triglycerides; reduced phospholipids.



ACS-specific microbial and metabolic characteristics

Figure 4. ACS-specific microbial and metabolic characteristics

• Clinical correlations: These features strongly correlated with inflammatory and cardiac injury markers such as NT-proBNP 

and hs-CRP.



Restoration of gut microbiota and metabolites following ACS recovery

Figure 5. Gut microbiota and metabolite changes during ACS recovery

• Study cohort: 52 

patients transitioned from 

ACS to stable CAD

• Microbiota 

shifts: Recovery patients 

resembled sCAD and 

diverged from ACS

• ACS features 

reversed: Pro-

inflammatory taxa such 

as Streptococcus 

spp. decreased



Restoration of gut microbiota and metabolites following ACS recovery

Figure 5. Gut microbiota and metabolite changes during ACS recovery

• Metabolite trends: Elevated 2-HB, 3-HB, and succinate in ACS decreased after recovery; amino acids increased

• Clinical implication: ACS-related microbial and metabolic features are partially reversible, highlighting their potential as 

recovery biomarkers

(E)



Multi-omics correlation analysis reveals the microbiota-metabolite-pathway links in ACS pathophysiology

Figure 6. Multi-omics integration reveals microbiota–metabolite interplay in ACS

• Method: MetOrigin was applied to integrate gut microbiota with circulating metabolites

• Key metabolites: Elevated 2-HB, 3-HB, and succinate positively correlated with multiple microbes

• Amino acid metabolism: Reduced tryptophan showed negative associations with specific taxa



Multi-omics correlation analysis reveals the microbiota-metabolite-pathway links in ACS pathophysiology

Figure 6. Multi-omics integration reveals microbiota–metabolite interplay in ACS

• Functional 

genes: ACS 

enriched in 

microbial genes for 

3-HB, succinate, 

and tryptophan 

metabolism

• Mechanistic 

insight: Gut 

microbes may 

contribute to ACS 

through metabolic 

pathway regulation



Integrating clinical, microbial, and metabolic features to distinguish different CAD stages using machine learning models

Figure 7. Multi-omics models distinguish CAD stages

• Method: LightGBM machine learning framework

• Findings:

Clinical markers alone showed limited performance (AUC < 0.7)

Adding metabolites and microbial features greatly improved 

discrimination

• Performance:

NCA vs sCAD: AUC = 0.75

NCA vs ACS: AUC = 0.91

sCAD vs ACS: AUC = 0.83

• Conclusion: Multi-omics integration outperformed traditional 

clinical markers



Summary

❑ ACS patients exhibit stage-specific alterations in gut microbiota and 

metabolites

❑ Inflammation-related microbes and metabolites play an important role in ACS

❑ Recovery patients display partial reversal of ACS-specific features

❑ Microbial and metabolic features hold promise as biomarkers for risk 

assessment and therapeutic targets
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