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A single-cell transcriptomic atlas of 1.79 million bovine cells
revealed the forestomach epithelium as one of the most

antioxidant-active tissues.

As forestomach epithelium differentiate from the basal layer
towards the luminal surface, both mitochondrial respiration
and antioxidant capacity progressively intensify, establishing

a coupled metabolic-redox gradient.

Functional assays identified GPX1 as key antioxidant target
mediating OXPHOS and cell differentiation.



>)) A single-cell oxygen signaling atlas in dairy-cow
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Figure 1. Oxygen signaling mapping based on the CattleCA.



xygen signaling atlas in forestomach epithelium
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Figure 2A. Heatmap of Antioxidant, ROS Generation, and Response pathway scores across

(gastrointestinal tract) GIT epithelial cell types.



‘0) Correlation between antioxidant and energy metabolism
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Figure 2B, C. Oxygen signaling landscape and correlation between antioxidant activity and

energy metabolism in forestomach epithelium.
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* Forestomach epithelium displays the strongest antioxidant defenses and metabolic activity among major high-

energy cell types.

Figure 3. Metabolic landscape heterogeneity within high energy-consuming cell types.



‘0) Metabolic remodeling during epithelial differentiation
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Rumen epithelial differentiation involves a coordinated rise in mitochondrial and lipid metabolism driven by key

Figure 4. Pseudotime analysis reveal metabolic remodeling in cattle forestomach epithelium.
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Spatial transcriptomics of rumen papillae
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Spatial transcriptomics revealed clear basal-to-lumen metabolic gradients in the rumen epithelium, with OXPHOS

and antioxidant pathways strongly upregulated in the outer differentiated layers.

Figure 5. Metabolic remodeling and spatial heterogeneity of rumen cells uncovered through spatial transcriptomics



Cell assays validation
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* Antioxidant activation—through GPXI modulation or Cys-Cys-Cys treatment—drives coordinated increases in
OXPHOS gene expression and epithelial differentiation in rumen cells.

Figure 6. Antioxidant supports metabolic remodeling and differentiation in rumen epithelial cells.



D) Antioxidant-driven functional phenotypes
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* Antioxidant enhancement—via GPX1 overexpression or Cys-Cys-Cys—improves redox balance and mitochondrial
respiration, while GPX1 knockdown impairs both, demonstrating that antioxidants directly support OXPHOS and

epithelial maturation.

Figure 7. Antioxidant modulation alters redox balance and mitochondrial respiration in rumen epithelial cells.



LiP-MS identifies Cys—Cys—Cys targets
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* LiP-MS reveals that the microbiota-derived
antioxidant Cys—Cys—Cys interacts with a
broad set of metabolic and redox-regulating
proteins, linking antioxidant activity to
OXPHOS and TCA cycle remodeling.

Figure 8. Limited Proteolysis-Mass Spectrometry (Lip-MS) analysis reveals Cys-Cys-Cys interaction

with rumen epithelial proteins.



{»)) Summary

d We constructed a cross-tissue redox signaling atlas encompassing approximately 1.8
million bovine cells, revealing the forestomach epithelium as a key tissue for antioxidant
metabolism.

Single-cell, spatial transcriptomic, and pseudotime analyses demonstrated a coordinated
basal-to-luminal gradient of antioxidant activation, metabolic remodeling, and epithelial
differentiation within the forestomach epithelium.

dFunctional experiments showed that modulation of GPX1 or supplementation with the
microbiota-derived tripeptide Cys—Cys—Cys enhances antioxidant capacity, oxidative
phosphorylation (OXPHOS) activity, and epithelial differentiation.

A LiP-MS further identified GPX1 as a potential molecular target of Cys—Cys—Cys.

Sen-Lin Zhu, Yu-Nan Yan, Ming-Hui Jia, Hou-Cheng Li, Bo Han, Tao Shi, Lian-Bin Xu, et al. 2025. Antioxidant
promotes metabolic remodeling in cattle rumen epithelium revealed by single-cell resolution.
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