Host-driven hepatic conversion of gut microbiota-derived putrescine
to spermidine mediates mannose’s protective effects against
hepatic steatosis in zebrafish
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» The gut microbiota and the host can be mediated through local and systemic
interactions, among which the gut-liver axis has been most studied.
» Host-bacterial interaction: Through the cellular components or secreted active

substances of microbes.
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d Clarifying the Dietary Intervention
Dysbiosis i) /Q Bomeostasis Pathway: Mannose specifically promotes
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] Revealing a Novel Gut-Liver
Collaborative Mechanism: For the first
time, it was discovered that gut microbes
(C. somerae) collaborate with the liver to
convert arginine into putrescine, which is
then transformed by the liver into
spermidine to improve fatty liver.
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for the concept of "microbe-host co-
metabolism producing active substances,
expanding new perspectives for disease
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Supplementation of mannose alleviated high-fat diet-induced fatty liver in zebrafish
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Figure 1. (A) One-month old zebrafish were fed normal-fat diet (NFD), high-fat diet (HFD) and three treatment diets supplemented with 2.5 g/kg (2.5M),
5 glkg (5M) and 10 g/kg (10M) mannose for four weeks, respectively. This feeding experiment was set up in 5 groups, where every group had 5 replicate
tanks containing 24 zebrafish. (B) Triacylglycerol (TAG) content in zebrafish liver. (C) Alanine aminotransferase (ALT) and (D) aspartate

aminotransferase (AST) contents in zebrafish serum. (E) Liver hematoxylin and eosin (H&E) sections. (F) Liver injury scores.



Q:E Mannose supplementation altered gut microbiota and selectively enriched Cetobacterium
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Figure S4. (A) The relative abundance of gut microbiota at the phylum level. (B) The

relative abundance of gut microbiota at the genus level. (C) Alpha diversity analysis of gut
microbiota. (D) LEfse analysis of gut microbiota at the species level. (E) PCoA analysis of
gut microbiota at the phylum level. (F) PCoA analysis of gut microbiota at the genus level.
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Figure 1. (G) The relative abundance difference analysis of gut
microbiota at the phylum and genus. (H) Spearman correlation
analysis between TAG content and the main phyla of gut microbiota.
(I) Spearman correlation analysis between TAG content and the main
genera of the gut microbiota.




Meta-analysis of the gut microbiota of fish

—
[
~

<100 500 C
=x r=-0.483P ~0.058 r=-0.736*** r=-0.964"***| r=-0685 r=-0495° <0086 | =g gg5**** ©
> TAG =100 - " . - 80
g 807 — Cetobacterium [ 400 _ = r=-0.800 r=-0.662 r=-0.458 r=-0.771 T
s 5 jg’ a0 \ Cetobacterium
2 60 -300 o g N ) 60 3
3 = I I\ A
8w 200 & 2 60 | f 5
- o = =] | A =
2 0 V \J 3 2 | / ."A" 40 g
] Q 40 \ Al 3
g 1./ /J\ v A af1oe £ \ [ i, 3
¥ X T [l 20 €
J J v U\/ \/ T 204 [ \Y =)
0+ s S —— M e e e ,....\....,../ ..... e e 0 I J Y
0 10 20 30 40 50 60 70 80 90 100 110 0 | 0
Zebrafish sample % O e e et : A .
: P 0 10 20 30 40 50 60
(A) Common carp sample
(D)
~. 100 - - — — — 500 100 80
2 r= 0,047 0858 r=0.130P7081 4 046777017 1= 0.2617700% r=-0.280° "3 | = .0.0167 07 & 1= -0.483P=0.187 r= -0,288P=0.262 r= -0,165F =0.500 r=-0,012P ~0.966 ™e
TAG Plesiomonas
g 80 |l\ — Plesiomonas | 400 ;l g 80 60 ;
2 | L300 & b g
5 1 < S 60 =
3 | 5 3 Lao =
by L200 & T 40 8
2 [ E] 2 3
3 I [| F100 & 5 20 20 &
o N & -
T ARARARS ARBRRRRRR UL T 0 0= e e B e e I B A B e : T | 0
50 60 70 80 0 10 20 30 40 50 60
Zebrafish sample € Common carp sample
(B)
. 100 — 500 = 100 80
*® r=0.371P=0.157 r=0.283P0-217 r4 -0.539°=0108| r=0.660 r=-0209P=04%4 | =  0goP=0736 = r= 0,150 P=0.700 r= 0,328 P=0.198 r=0.033 P=0.802 r=0.212 P=0431 TAG
g 80 TG 400 8 80 Aeromaonas
Aeromanas | — 2 reo 3
§ o ] o]
g 60 F300 g £ 60 g
2 2 3 -
© 5 © ]
S 40- F200 5 o 407 3
= 3 2
= @ o F20 €
T 20 L100 & o 20 s
[i2
0 —trrrrrrrrr e BARRRRREE: T T T T BERRREREE; T e 0 O L e S B B T LN e B S A B B A I s s B e B S R S B S —+0
0 10 20 30 40 50 60 70 80 90 100 110 0 10 20 30 40 50 60
Zebrafish sample Common carp sample

Figure S5. (A) The relationship between Plesiomonas and the liver TAG content in
zebrafish. (B) The relationship between Aeromonas and the liver TAG content in zebrafish.
liver TAG content in zebrafish by Spearman correlation analysis. (C) The relationship between Cetobacterium and the liver TAG content in Cyprinus carpio.
(D) The relationship between Plesiomonas and the liver TAG content in Cyprinus carpio.
(E) The relationship between Aeromonas and the liver TAG content in Cyprinus carpio.

Figure 1. (J) The relationship between Cetobacterium and the



<= Genomic analysis of C. somerae revealed its ability to metabolize mannose
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Figure 1. (K) Chromosome circos diagram of C. somerae XMX-1, P. Shigeloides CBS5 and A. veronii

XMX-5. (L) Annotation results of the key genes in Mannose metabolism of the three representative strains.
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Figure S7. (A) Germ-free zebrafish larvae were
fed sterile HFD supplemented with mannose. (B)
TAG content of GF zebrafish larvae. (C) Oil red
staining of GF zebrafish larvae. (D) Quantification
of oil red staining of GF zebrafish larvae.
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4z Gut C. somerae, not mannose, reduced liver fat accumulation in zebrafish
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Figure 2. (E) Genomic analysis and isotope tracing of the ability of ZFL cells to
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4: Isotope tracing of putrescine metabolic pathways in zebrafish
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Figure 2. (J) TAG content in zebrafish liver.

Figure S15. (A) One-month old zebrafish were fed with diets supplemented with 0.5 g/kg putrescine and 0.8 g/kg spermidine (with
equimolar amounts of putrescine and spermidine) for four weeks. Four groups were divided into normal-fat diet (NFD), high-fat
diet (HFD), 0.05putrescine and 0.08spermidine groups. (B) Oil red staining of zebrafish liver. (G) The content of putrescine in liver.
(H) The content of spermidine in liver. (I) Linear regression analysis of the content of putrescine and spermidine in liver.




Q:é Discovery of putrescine-spermidine cross talk in the HFD zebrafish model
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Figure 2. (K) The content of putrescine in liver of Zebrafish fed with mannose and C. somerae. (L) The content of spermidine

in liver of Zebrafish fed with mannose and C. somerae. (M) Linear regression analysis of the liver content of putrescine and

spermidine in Zebrafish fed with mannose and C. somerae.




Summary

1 Mannose supplementation did not directly mitigate HFD-induced liver steatosis, but
promote the growth of C. somerae.

O Large amount of putrescine was produced in the gut by C. somerae from arginine.
 Putrescine was transported to the liver and converted by the host cell to spermidine.

O A novel host-microbiota collaborative mechanism in which the arginine-putrescine-
spermidine metabolic pathway is completed through inter-kingdom cooperation to
ameliorate hepatic steatosis.

Delong Meng, Zhen Zhang, Tsegay Teame, Benjamin Earl Niemann, Rui Xia, Shichang Xu, Yajie Zhao, et al. 2025.
Host-driven hepatic conversion of gut microbiota-derived putrescine to spermidine mediates mannose’s protective
effects against hepatic steatosis in zebrafish. iMeta 4: ¢70101. https://doi.org/10.1002/imt2.70101
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