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| THE NEW PARADIGM: MICROPLASTICS-GUT-MICROBIOTA-METABOLISM AXIS |

Human beings ingesting nano-microplastics through daily routes (food, water, air, etc.) for

a long time!

The limitations of existing studies are that they focus on single-organ toxicity and lack of
understanding of systemic metabolic interactions.




Experimental design
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A mouse experimental model of long-term exposure to NPs through drinking water

A systematic analysis combining histopathology, biochemical analysis, targeted
metabolomics, and metagenomics was performed.



Changes in energy metabolism and inflammatory responses of the liver and kidneys
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Effects of chronic NPs exposure on growth performance, Chronic NPs exposure remodels hepatic and renal lipid
organ indices, and systemic metabolic profiles in mice. metabolism and induces inflammatory responses.



Intestinal barrier damage and inflammatory outbreaks
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Co-occurrence network among TC and TG content, lipid
metabolism-related genes, and inflammatory factors in
liver and kidney after NPs exposure.
The intestinal barrier is severely impaired, the mucus layer is

thinner, and markers of oxidative stress are significantly elevated.
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Chronic NPs exposure disrupts intestinal redox balance,

barrier integrity, and inflammatory signaling.



Hepatointestinal bile acid profile and intestinal flora diversity
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Chronic NPs exposure alters circulating bile acid composition
and perturbs hepatic—intestinal metabolic pathways.
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Structural differences and functional roles of intestinal microbiota
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Structural differences and functional roles of intestinal microbiota

Linecolor Abundance Linecolor Abundance Linecolor Abundance
Positive expression (log10) Positive expression (log10) Positive expression (log10)
——Negative - 3.49 ——NMNegative + 05 ——Negative = 0.12
‘429 m 157

*4.69 :
#5.0 ) s . [ PX:"
*5.49 ;

" ! P255ge L
* Pnaccachemaniem_mis 2

o Clasiridhum_phage_phicTR]
W ggctenres_phage_BA%

Bactorcides_sdfscions
Bacterakdes_sartor

Abundance Abundance Abundance
of expression of expression of expression
1 05 0 1 05 1 05 0
NPs NPs NPs.
CK| _Eka CK cK[ A
~o010 ° S 02 S0z g
2 : H
005 : 50% §ofe b TN tl o4 i 1
N p o bz el ~ 00 ; b o e
S 0.00( : o S VY|PERMARIOVA: et oo ——=md= >
& .05 | PERMANOVA: Unclassified 8685 8300 o -0 p-vaLue .F_ 0.05 Neocallimastigaceae . i ®NPs Retroviridae 115 122

-0.2 0.0 02 04 CKNPs CK NPs

: f OVA: 1
s ool DO oal S ¢ R e YV el W
-0.10 - : H =0. 0
-0.2-0.1 0.0 0.1 0.2 CK NPs 4.3Y 0 02 00 02 O0ACKNPs 3.3 100%
CK NPs PC1(44%) )

° PC1(75%) ® PC1(75%)

E 2 § Thermoanairobacteraceae § . o Bondarzewiaceae Caulimoviridae

2 g 8 g 0 g 8 & 8 . g 8 P °

5 & - g , 8 g P o 8 g g H g g gim, g 8 $ & s 0

E £ 3 3 & ] = S z o e = = = = = 5
g17.29 2 [136.7% £526.5% c 1 66.49 =313 £ §:25-29 S 60.09 gl 442 £ a4 £ | 34.59 £ 57.19 £1 90.5% 311290.6 z 744 S 383 =0 52.0 3l 810 25257
£ 8 S 2 2 5 & 5 7 i g s s 3 S E S 8

< o - @ < [ i z = [ @ i 3 = s £

Chronic NPs exposure alters intestinal bacterial, fungal, and viral community structure in mice.



Changes in CAZymes and ARGs of the gut microbiota
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Effects of chronic NPs exposure on intestinal
carbohydrate-active enzymes (CAZymes) and
antibiotic resistance genes (ARGs).
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Summary

Bile acid-microbiota axis remodeling
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We characterize a 'Microplastics—Gut—Microbiota—Metabolism' axis where bile acids act as key messengers linking gut
dysbiosis to hepato-renal metabolic injury. This mechanism underscores the systemic risks of chronic nanoplastic exposure
and positions bile acid homeostasis and 7a-dehydroxylating bacteria as critical targets for mitigating health risks.

Y1 Zhang, Zheng Lin, Runtong Huang, Yang Zhang, Lei Wang, Zan Fu, Chao Wang, et al. 2025. Nano-plastics disrupt systemic
metabolism by remodeling the bile acid—microbiota axis and driving hepatic—intestinal dysfunction. iMeta 4: ¢70103.
https://doi.org/10.1002/imt2.70103
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“iMeta” launched in 2022 by iMeta Science Society, impact factor (IF) 33.2, ranking top 65/22249 in world and 2/161 in the
microbiology. It aims to publish innovative and high-quality papers with broad and diverse audiences. Its scope is similar to Cell,
Nature Biotechnology/Methods/Microbiology/Medicine/Food. Its unique features include video abstract, bilingual publication, and
social media with 600,000 followers. Indexed by SCIE/ESI, PubMed, Google Scholar etc.

“iMetaOmics” launched in 2024, with a target IF>10, and its scope is similar to Nature Communications, Cell Reports,
Microbiome, ISME J, Nucleic Acids Research, Briefings in Bioinformatics, etc.

“iMetaMed” launched in 2025, with a target IF>15, similar to Med, Cell Reports Medicine, eBioMedicine, eClinicalMedicine etc.
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