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FIGURE 2 Schematic representation of the study cohort design and analysis process flow.
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Summary

e Multi-omics integration revealed species-specific rumen energy metabolic strategies in yaks

and Holstein cows under extreme high-altitude environment.

e Compared with those of Holstein cows also reared at high altitudes their entire lives, yak

rumen epithelial cells exhibited clearly different functions indicative of energy metabolism.

e Yak rumen fluid transplantation confirmed an enhanced microbial central carbon metabolism

and resulted in an improved milk production in Holstein cows that received yak rumen fluid.

Xinyu Zhang, Senlin Zhu, Michael Kreuzer, Shoukun Ji, Wei Wang, Yanliang Bi, Shengli Li. 2025. Gut microbiome in the
regulation of high-altitude adaptation. iMeta 4: ¢70104. https://doi.org/10.1002/imt2.70104
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