Strategies and Tools in illumina & Nanoporeintegrated metagenomic analysis of microbiome data

Xia Yu¹, Xiang Li¹, Ziqi Wu¹, Cailong Nie¹, Zhanwen Cheng¹, Yuhong Sun¹, Lei Liu², Tong Zhang²

MAR

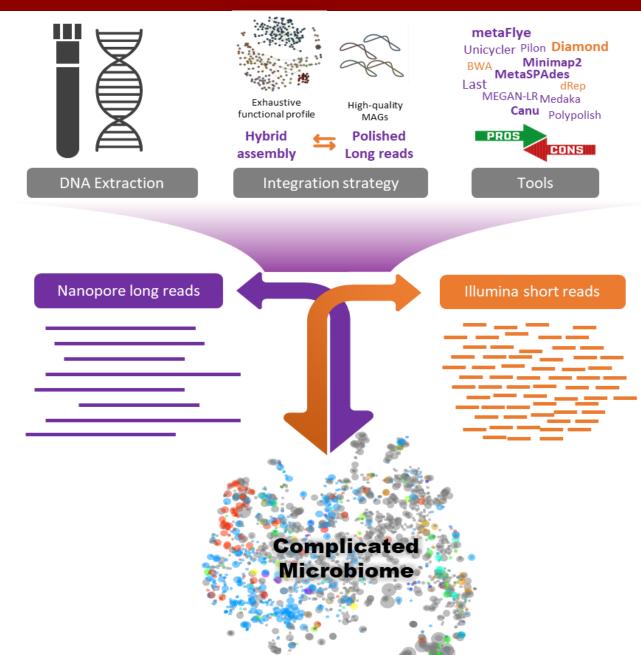
1 School of Environmental Science and Engineering, Southern University of Science and Technology 2 Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong

Yu Xia, Xiang Li, Ziqi Wu, Cailong Nie, Zhanwen Cheng, Yuhong Sun, Lei Liu, Tong Zhang. 2022. Strategies and tools in illumina and nanopore-integrated metagenomic analysis of microbiome data. *iMeta* 1: e72. https://doi.org/10.1002/imt2.72

Background: Metagenomic Microbiome Data Analysis

illumina®

- □ Low price commercial sequencing service
 → high community coverage
- **D** Low requirement on the input DNA,1ng.
- □ High per base accuracy
 - High accuracy of assembled contigs
 - Various mature bioinformatic frameworks
- □ High instrumental cost → longer turn-around time
- Unavoidable biases against high-GC
- □ SR limitations for analysis
 - Annotation difficulties
 - Fragmented assembly



Advantages	Low instrumental cost → short turn-around time & Higher feasibility
	New protocols: ReadUntil sequencing
	No systematic bias
	LRs benefits for analysis
	much longer assembly
	Differentiate closely-related lineage
Limitations	High price for commercial sequencing service → limited community coverage
	Strict requirement on DNA purity and quantity
	High error rate LRs
	Unmature bioinformatic tools
	Persistence of indel errors on

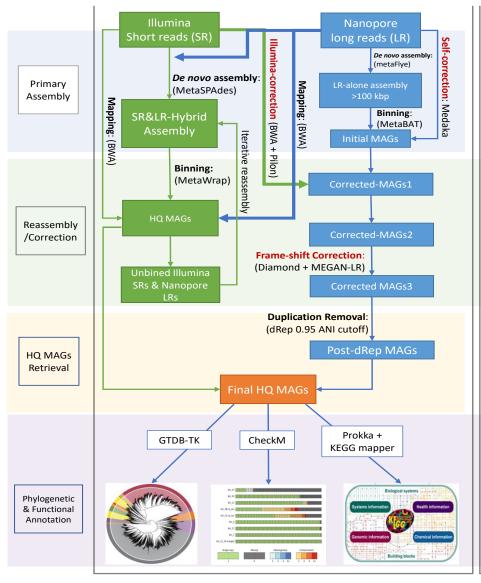
assembled contigs

Limitations

Integrating Illumina SRs and Nanopore LRs

What would you get from this review:

systematic and timely knowledge framework for integrating SRs and LRs in metagenomic microbiome data analysis

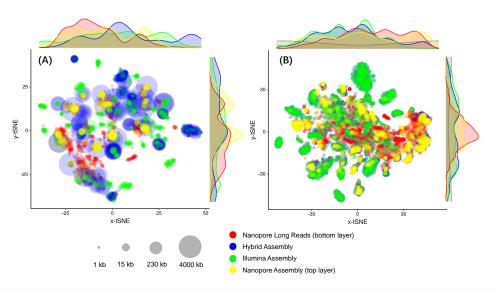

The workflow of common analytic strategies for SRs and LRs integration

Algorithm foundations and application practice of common tools.

Sample preparation protocols commonly used

Strategies and Tools

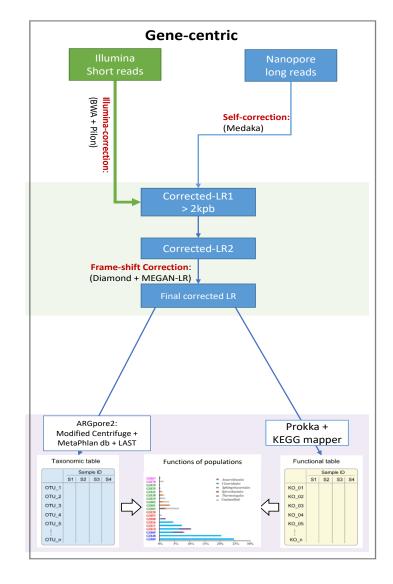
"Genome-centric" strategy: to get high-quality MAGs



□ Hybrid assembly: High Computational Cost hybrid-assembly of illumine short-reads and Nanopore long-reads Tool used: MetaSPAdes and Unicycler

Insufficient Community Nanopore assembly: Coverage Assembly of nanopore long-reads Tool used: Miniasm, Canu and Metafyle Polish1: Self-correction of long-reads Tool used: Medaka and Racon Polish2: Illumina-based Indels polish Tool used: Pilon and Polypolish Polish3: frame-shift correction Tool used: Diamon+MEGAN-LR

Strategies and Tools


Assembly-free "Gene-centric" strategy

Core idea: functional diversity of communities directly Identify and quantify based on corrected LRs rather than assembled MAGs

□ Importance:

LRs are not easy to be assembled due to low coverage
 LRs is as long thus informative as assembled contigs

Yu Xia, Xiang Li, Ziqi Wu, Cailong Nie, Zhanwen Cheng, Yuhong Sun, Lei Liu, Tong Zhang. 2022. Strategies and tools in illumina and nanopore-integrated metagenomic analysis of microbiome data. *iMeta* 1: e72. https://doi.org/10.1002/imt2.72

iMeta: Integrated meta-omics to change the understanding of the biology and environment WILEY

"*iMeta*" is an open-access Wiley partner journal launched by scientists of the Chinese Academy of Sciences. iMeta aims to promote metagenomics, microbiome, and bioinformatics research by publishing original research, methods, or protocols, and reviews. The goal is to publish high-quality papers (Top 10%, IF > 15) targeting a broad audience. Unique features include video submission, reproducible analysis, figure polishing, APC waiver, and promotion by social media with 500,000 followers. Three issues were released in <u>March</u>, <u>June</u>, and <u>September</u> 2022.

Society: <u>http://www.imeta.science</u>

Publisher: https://wileyonlinelibrary.com/journal/imeta

Submission: https://mc.manuscriptcentral.com/imeta

