

Precision microbial regulation: strategies for modulating GIT microbiota for host health

Pei Zhong¹, Qin Li¹, Yanmei Zhang¹, Cheng Guo¹, Mahmoud M. Abdelsattar^{1,2}, Yanliang Bi¹

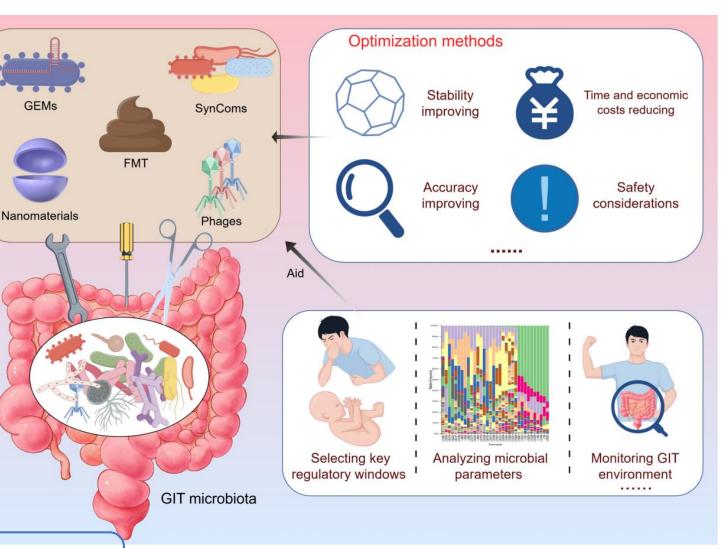
 ¹Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
²Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, 83523 Qena, Egypt

Pei Zhong, Qin Li, Yanmei Zhang, Cheng Guo, Mahmoud M. Abdelsattar, Yanliang Bi. 2024. Precision microbial regulation: strategies for modulating GIT microbiota for host health. *iMetaOmics* 1: e54. <u>https://doi.org/10.1002/imo2.54</u>

Introduction

Gastrointestinal microbes help hosts maintain physiological stability, promote growth, and control disease

Can microbes be precisely regulated to change towards a desired state?


Fecal microbes transplants, synthetic microbial communities, gene-edited microbes, phages, nanomaterials, and other novel microbial regulatory strategies

What limits their practical application and how can they be solved?

Accuracy, stability, safety, economy optimization strategies

How can other microbiology knowledge aid microbial regulation?

Selecting regulatory windows, analyzing parameters to identify biomarkers, and monitoring the GIT environment

Highlight

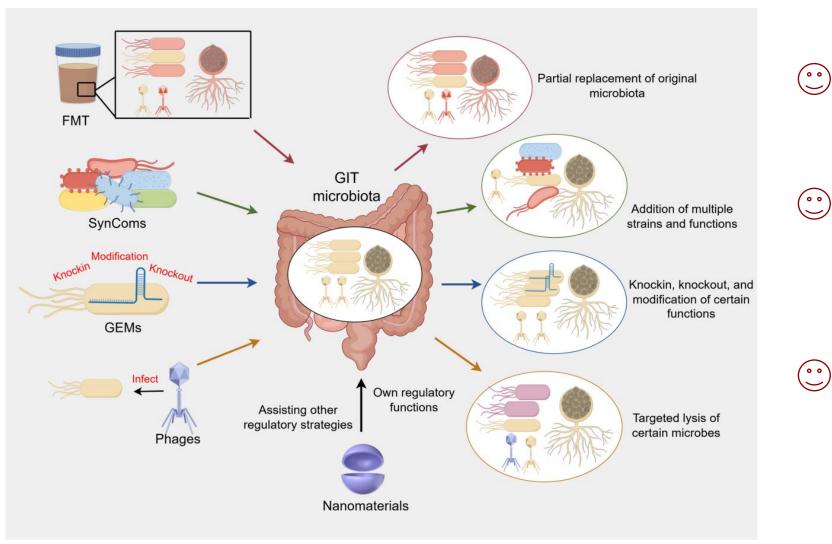


Figure 1 Targeted GIT microbial regulatory strategies and their characteristics

Emphasized the necessity of targeted strategies in regulating GIT microbiota.

The precise regulation strategies for GIT microbiota include FMT, SynComs, GEMs, phages, and nanomaterials, all of which have been individually reviewed.

Equipping these strategies with more microbiological discoveries will help improve the precision of selecting intervention timing and microbial biomarkers.

Targeted Regulatory Strategies for GIT Microbiota

Many factors influence GIT microbes, and in addition to genetic and environmental factors, antibiotics, probiotics, prebiotics, synbiotics, and postbiotics have been developed as modulatory strategies.

Genetic, environmental are difficult to control; antibiotic use may lead to dysbiosis; the effectiveness of probiotic products is not stable; simple supplementation with probiotics is difficult to accurately regulate GIT microbiota

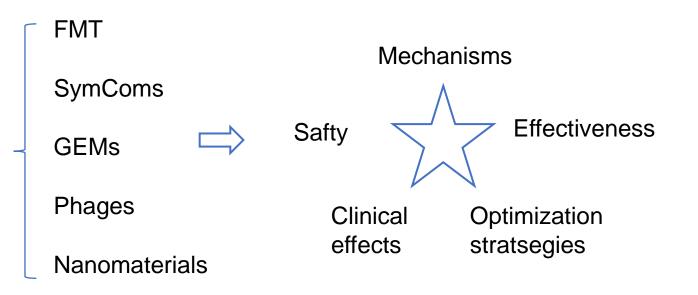


Table 1 Several clinical trials on targeted regulation approaches conducted within the past five years

past five years					
Situation	Method	Outcome	Year	NO.	Refo
CDI	FMT	Reduced the risk of recurrent infections	2022	NCT031	[192]
	(spores)	with a good safety profile		83128	
CDI	FMT	Improved both the physical and	2023	NCT032	[193]
		psychological condition of the patients		44644	
SLE	FMT	Improved systemic immune-inflammation	2022	ChiCTR	
		profiles		2000036	[194]
		promes		352	
ASD	FMT	Decreased 5-HT and GABA levels in	2021	ChiCTR	[195]
				1800014	
		serum, and alleviated ASD		745	
CDI	SynCom	High-dose SynCom prevented the	2023	NCT037	[196]
		recurrence of CDI		88434	
CDI	SynCom	Among the 19 patients, 16 (84%) had no	2021	NCT028	[197]
		recurrence by day 130		65616	
Advanced Solid tumors	SynCom	SynCom are tolerable and safe in ICI	2023	NCT036 86202	[198]
		recipients, regardless of tumor type, and			
		may influence the microbiota and			
		metabolites			
PKU	GEM	Safe and well-tolerated; a dose-responsive	2021	NCT035 16487	[199]
		increase in strain-specific phenylalanine			
		metabolites was observed			
PKU	GEM	GEM metabolize phenylalanine in the gut,	2023	NCT045 34842	[200]
		reducing postprandial plasma and fasting			
		plasma phenylalanine levels in PKU			
		patients			
T1D	GEM	The frequency of proinsulin-specific CD8+	2023	NCT037	
		T cells decreased		51007	[201]
Hyperam monemia	GEM	GEM can metabolize ammonia and	2019	NCT031 79878	[80]
		produce nitrate, leading to a significant			
		dose-dependent increase in 15 N-nitrate			
		levels in urine and plasma			
IBD	Phage	With good safety and tolerance and could	2022	NCT047	[21]
		survive in GIT		37876	
消化道	Phage	Fecal E. coli load was reduced, along with	2019	NCT032	[202]
issues		a decrease in IL-4 levels		69617	
ICD	Phage	_	2021	NCT038	[203]
		Inprogress		08103	
Metabolic	FVT	Influenced the composition of phages in			
syndrome	(FFT)	GIT, with good safety and tolerability	2023	NL8289	[204]
- ,	()	,			

Targeted Regulatory Strategies for GIT Microbiota

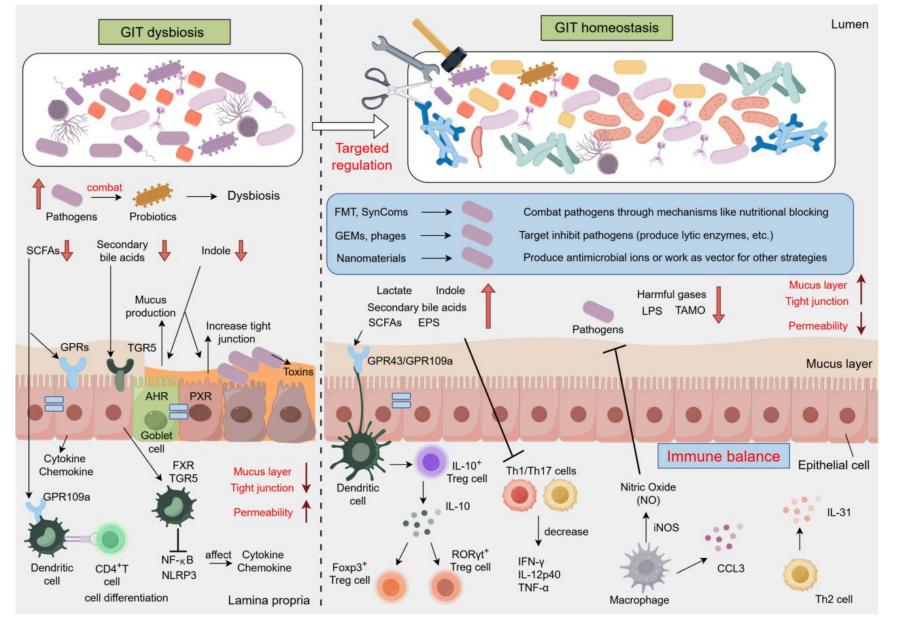
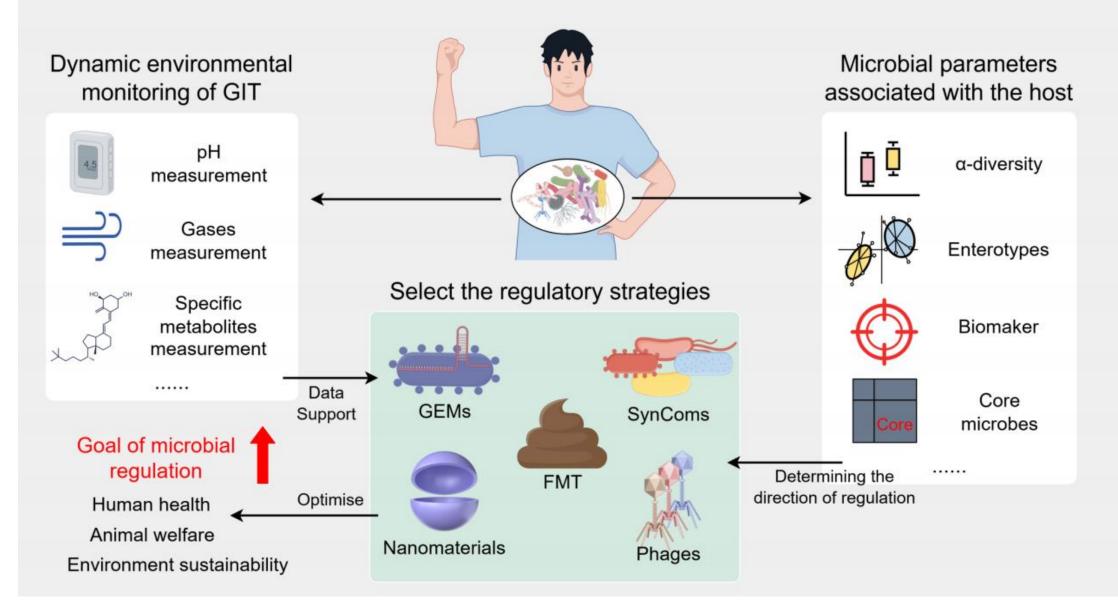



Figure 2 Microbial regulatory strategies can maintain GIT homeostasis

Microbial modulation strategies need to be further optimized to improve precision, enhance stability, ensure safety, and reduce time and economic costs. These efforts will provide a solid foundation for their eventual widespread application.

Leveraging Microbial Knowledge to Aid Targeted Modulation Strategies

Figure 3 Support methods for regulatory strategies

❑ This article explores the possibility of using targeted GIT microbial modulation strategies to promote host health and reviews the mechanisms, effectiveness, safety, and clinical outcomes of these strategies. The study suggests that fecal microbes transplants, synthetic microbial communities, genetically engineered microbes, phages, and nanomaterials are expected to be the next generation of GIT microbial modulation strategies.

Optimizing the effectiveness, stability, safety, and economics of these strategies will help to apply them in real-world situations for targeted impact on GIT microbes.

Cutting-edge microbial knowledge will aid in the use of regulatory strategies such as selecting microbial regulatory windows, identifying marker microbes as regulatory targets, and monitoring the GIT environment to capture regulatory timing.

Pei Zhong, Qin Li, Yanmei Zhang, Cheng Guo, Mahmoud M. Abdelsattar, Yanliang Bi. 2024. Precision microbial regulation: strategies for modulating GIT microbiota for host health. *iMetaOmics* 1: e54. https://doi.org/10.1002/imo2.54

iMeta: Integrated meta-omics to change the understanding of the biology and environment

"<u>iMeta</u>" is a Wiley partner journal launched by iMeta Science Society in 2022, first impact factor (IF) **23.8** in 2024, ranking 2/161 in the microbiology. It aims to publish innovative and high-quality papers with broad and diverse audiences. Its scope is similar to *Nature Biotechnology, Nature Methods, Nature Microbiology , Nature Food,* etc. Its unique features include video abstract, bilingual publication, and social media dissemination, with more than 600,000 followers. It has published 220+ papers and been cited for 5600+ times, and has been indexed by <u>SCIE / WOS</u>, <u>PubMed</u>, <u>Google Scholar</u>, and <u>Scopus</u>. "*iMetaOmics*" is a sister journal of "*iMeta*" launched in 2024, with a target IF>10, and its scope is similar to *Nature*

Communications, Microbiome, ISME J, Nucleic Acids Research, Briefings in Bioinformatics, etc. All contributes are welcome!

Society: <u>http://www.imeta.science</u>

Publisher: https://wileyonlinelibrary.com/journal/imeta

Submission: <u>https://wiley.atyponrex.com/journal/IMT2</u> https://wiley.atyponrex.com/journal/IMO2

WILEY