

BioMGCore: a toolkit for detection of biological metabolites in microbiome

Guang Yang¹, Guohao Yu¹, Qian Cui¹, Xueping Huang¹, Kexin Guo¹, Shulei Jia^{2*}

¹ Jiangsu Ocean University, Jiangsu, 222005, China ² Tianjin Medical University, Tianjin, 300070, China

Guang Yang, Guohao Yu, Qian Cui, Xueping Huang, Kexin Guo, Shulei Jia. 2025. BioMGCore: a toolkit for detection of biological metabolites in microbiome. *iMetaOmics* 2: e70036. <u>https://doi.org/10.1002/imo2.70036</u>

• Microbial metabolites are closely related to human health

• Microbial metabolites are encoded by core gene clusters (MGCs), which are tightly arranged and work together

- Microbial primary/secondary metabolite analysis tools are widely used with large and complex annotations
- To solve the problem of processing massive results, the gene cluster extraction tool BioMGCore has been well developed

• The developed toolkit can help explore potential primary or secondary metabolites, greatly improving work efficiency

Highlights

12

https://github.com/xielisos567/BioMGCore

Overview of the workflow

Mainly two steps: annotation of microbial primary/secondary metabolites and running the BioMGCore toolkit.

https://github.com/xielisos567/BioMGCore

Batch extract core MGCs from annotations:

(1) Accurately identify and extract designated

functional gene clusters

(2) Add source information for taxonomic groups

(3) Batch statistics for predicting secondary

metabolites

(4) Simultaneous extraction of nucleotides/amino acids

Running the BioMGCore toolkit

BioMGCore toolkit running logic:(1) Keyword matching logic

(2) The principle of proximity of genes in MGCs

BioMGCore toolkit extraction:

- (1) Extract according to the gutSMASH annotations
- (2) Extract based on antiSMASH annotations
- (3) Add taxonomic information

Case 1: Microbial analysis workflows

SGBs	Chromosome	Region	Туре	From	To	Most similar known cluster	Similarity
AM09-9_scaffold	AM09-9.Scaf5	Region5.1	ranthipeptide	75239	96880		
AM09-9_scaffold	AM09-9.Scaf7	Region7.1	RRE-containing	82492	100828		
AM09-9_scaffold	AM09-9.Scaf23	Region23.1	RRE-containing	1138	21404		
AM09-9_scaffold	AM09-9.Scaf25	Region25.1	RRE-containing	32859	43393		
AM09-9_scaffold	AM09-9.Scaf30	Region30.1	RRE-containing	6752	27018		
AM34-8_scaffold	AM34-8.Scaf7	Region7.1	thiopeptide	126915	153207	O-antigen	14%
AM34-8_scaffold	AM34-8.Scaf14	Region14.1	NRP-metallophore,NRP	1	40003	enterobactin	100%
AM34-8_scaffold	AM34-8.Scaf34	Region34.1	NRPS,T1PKS	1	23002	yersiniabactin	10%
AF27-11AA_scaffold	AF27-11AA.Scaf13	Region13.1	ranthipeptide	13672	35554		
AF29-16BH_scaffold	AF29-16BH.Scaf1	Region1.1	phosphonate	581279	595658	polysaccharide B	6%
AF29-16BH_scaffold	AF29-16BH.Scaf10	Region10.1	ranthipeptide	83986	105216		
TF06-40_scaffold	TF06-40.Scaf15	Region15.1	RRE-containing	63185	83451		
OM05-15BH_scaffold	OM05-15BH.Scaf8	Region8.1	RRE-containing	287188	307454		
OM05-15BH_scaffold	OM05-15BH.Scaf25	Region25.1	RRE-containing	23301	43651		
OM05-15BH_scaffold	OM05-15BH.Scaf28	Region28.1	arylpolyene	10621	47431	flexirubin	48%
AF22-12AC_scaffold	AF22-12AC.Scaf1	Region1.1	RRE-containing	61572	81829		
AF22-12AC_scaffold	AF22-12AC.Scaf8	Region8.1	ranthipeptide	4714	26084		
AF22-12AC_scaffold	AF22-12AC.Scaf1	Region1.2	RRE-containing	84450	105592		
TM07-10_scaffold	TM07-10.Scaf2	Region2.1	RiPP-like	85698	96483		
TM07-10_scaffold	TM07-10.Scaf23	Region23.1	NRPS-like	1	30191		
TM07-10_scaffold	TM07-10.Scaf2	Region2.2	opine-like-metallophore	194688	211727		

Table S1. Statistical analysis of antiSMASH annotations with the BioMGCore toolkit

(1) At least 1266 (/1520) bacteria had the potentials to synthesize secondary metabolites, with intact MGCs being detected in their genomes.

(2) Functional MGCs for synthesizing cyclic lactone autoinducers have the highest proportion (31.22%) among all

MGCs and coexist with other secondary

metabolite genes.

Running code:

python3 antiSTAT.py -i data_path_antiSMASH_annotation -o ./statistics.xlsx

Case 2: Microbial analysis workflows

Table S2. Analysis of gutMASH annotations with the BioMGCore toolkit

Accessions	Species	Strain info		
GCF_002208985.1	Citrobacter koseri	strain=FDAARGOS_287		
GCF_002393245.1	Citrobacter koseri	strain=FDAARGOS_393		
GCF_002947035.1	Citrobacter koseri	strain=AR_0025		
GCF_002947675.1	Citrobacter koseri	strain=AR_0024		
GCF_003812405.1	Citrobacter koseri	strain=FDAARGOS_530		
GCF_008693945.1	Citrobacter koseri	strain=FDAARGOS_646		
GCF_014679775.1	Citrobacter koseri	strain=MPUCK001		
GCF_016128275.1	Citrobacter koseri	strain=FDAARGOS_1029		
GCF_019443705.1	Citrobacter koseri	strain=NJ		
GCF_000783755.2	Citrobacter freundii	strain=FDAARGOS_73		
GCF_000783995.2	Citrobacter freundii	strain=FDAARGOS_61		
GCF_001022155.1	Citrobacter freundii	strain=CAV1321		
GCF_001022275.1	Citrobacter freundii	strain=CAV1741		
GCF_001702455.1	Citrobacter freundii	strain=B38		
GCF_001718055.1	Citrobacter freundii	strain=SL151		
GCF_002211705.1	Citrobacter freundii	strain=705SK3		
GCF_002215385.1	Citrobacter freundii	strain=18-1		
GCF_002786865.1	Citrobacter freundii	strain=CRCB-101		
GCF_002796505.1	Citrobacter freundii	strain=AR_0022		
GCF_003571565.1	Citrobacter freundii	strain=AR_0116		
GCF_003665535.1	Citrobacter freundii	strain=UMH19		

(1) A total of 3541 (/25,755) bacterial strains
carried intact *caiTABDE* gene cluster, mainly
belonging to *Escherichia coli* and *Salmonella enterica*, both members of the Firmicutes phylum.

(2) A species-specific database of *caiTABDE* gene cluster was constructed , which was helpful for targeted therapy of CVDs.

Summary

□ In this study, we introduced a user-friendly toolkit designed specifically for the study of microbial primary/secondary metabolites - BioMGCore.

□ At present, BioMGCore can identify and extract core functional gene clusters, and support analysis and statistics based on different taxonomic groups.

□ BioMGCore has been well applied in microbiomic analysis with high accuracy. The tool will continue to be upgraded to meet users' needs for standardized and personalized microbiomic analysis.

□ Website: <u>https://github.com/xielisos567/BioMGCore</u>

Guang Yang, Guohao Yu, Qian Cui, Xueping Huang, Kexin Guo, Shulei Jia. 2025. BioMGCore: a toolkit for detection of biological metabolites in microbiome. *iMetaOmics* 2: e70036. <u>https://doi.org/10.1002/imo2.70036</u>

iMeta: Integrated metaomics to understand the biology, med and environment

WILEY

"<u>iMeta</u>" launched in 2022 by iMeta Science Society, impact factor (IF) **33.2**, ranking top 65/22249 in world and 2/161 in the microbiology. It aims to publish innovative and high-quality papers with broad and diverse audiences. Its scope is similar to Cell, Nature Biotechnology/Methods/Microbiology/Medicine/Food. Its unique features include video abstract, bilingual publication, and social media with 600,000 followers. Indexed by <u>SCIE/ESI</u>, <u>PubMed</u>, <u>Google Scholar</u> etc.

"*iMetaOmics*" launched in 2024, with a target IF>10, and its scope is similar to Nature Communications, Cell Reports, Microbiome, ISME J, Nucleic Acids Research, Briefings in Bioinformatics, etc.

"*iMetaMed*" launched in 2025, with a target IF>15, similar to Med, Cell Reports Medicine, eBioMedicine, eClinicalMedicine etc.

Society: <u>http://www.imeta.science</u>

Publisher: <u>https://wileyonlinelibrary.com/journal/imeta</u> iMeta: https://wiley.atyponrex.com/journal/IMT2

Submission: iMetaOmics: <u>https://wiley.atyponrex.com/journal/IMO2</u> iMetaMed: <u>https://wiley.atyponrex.com/journal/IMM3</u>

