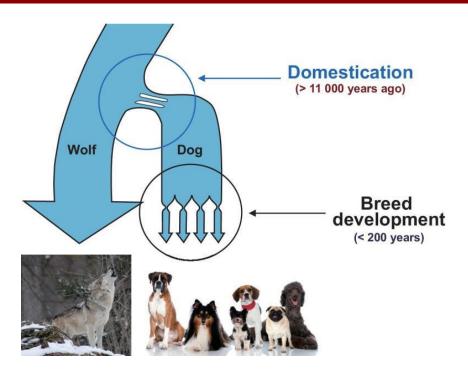
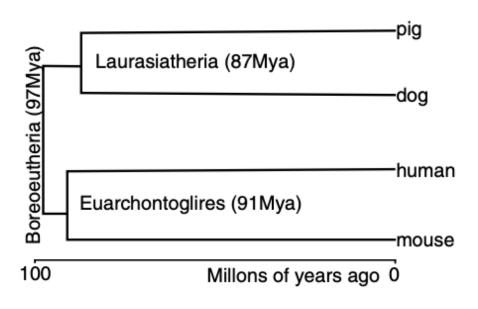
Convergent Evolution of Metabolic Functions: Evidence from the Gut Microbiomes of Humans and Dogs


Xiaoyang Wang¹, Lei Zhu², Yue Lan³, ..., Zhigang Zhang⁴, Guo-Dong Wang¹

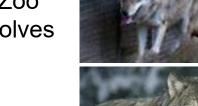
¹State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
 ²Cancer Research Institute, Yunnan Cancer Hospital, Kunming, China
 ³Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
 ⁴State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China



Introduction

Dogs and humans have convergent evolution in genes related to the starch-based diet

Coelho et al., 2018


Materials and Methods

Fecal samples from six groups

Macaques

Zoo wolves

Wild wolves

Working dogs

nature biotechnology

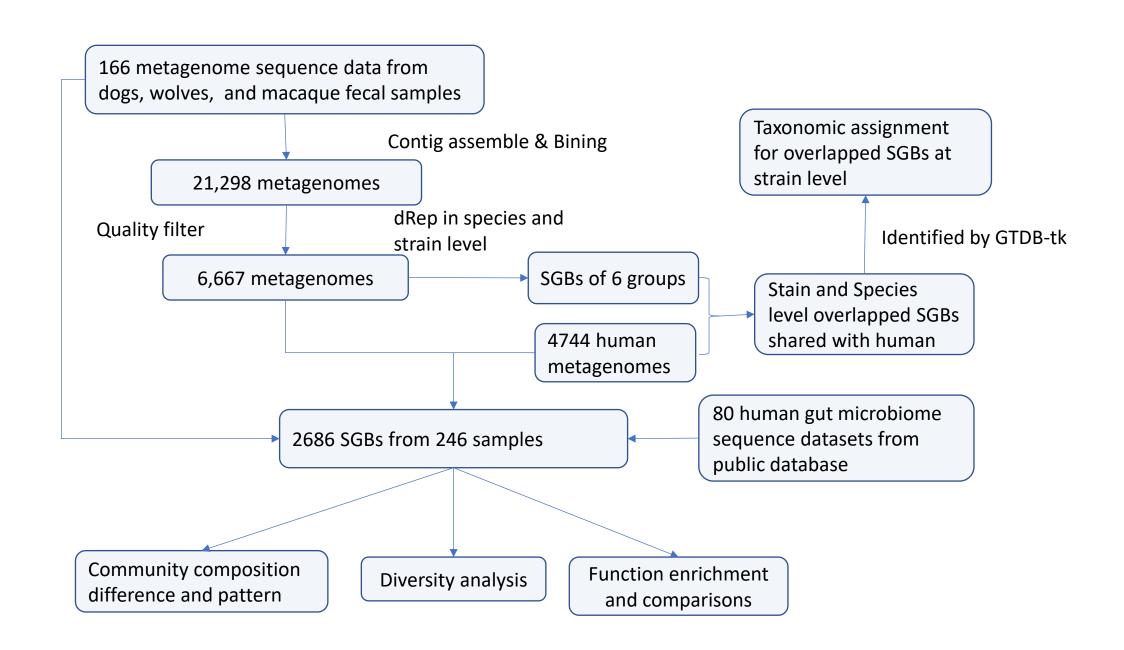
RESOURCE https://doi.org/10.1038/s41587-020-0603-3

OPEN

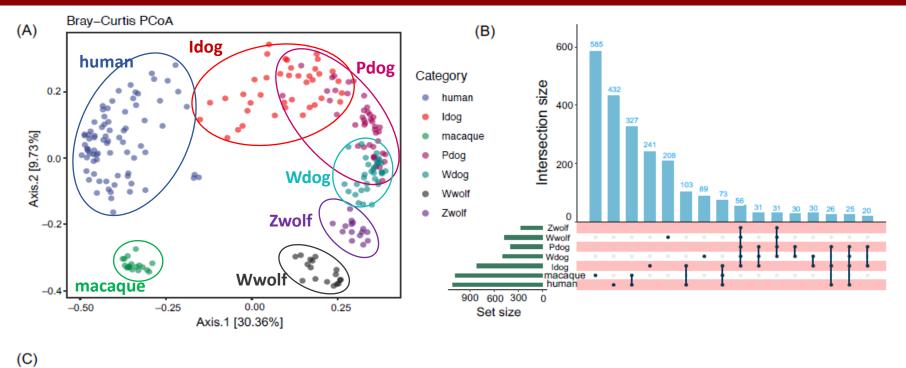
A unified catalog of 204,938 reference genomes from the human gut microbiome

Alexandre Almeida 1.2 A. Stephen Nayfach 3.4, Miguel Boland 1, Francesco Strozzi 5, Martin Beracochea 1, Zhou Jason Shi 5.7, Katherine S. Pollard 5,7,8,9,10,11, Ekaterina Sakharova 1, Donovan H. Parks 12, Philip Hugenholtz 12, Nicola Segata 13, Nikos C. Kyrpides 3,4 and Robert D. Finn 12

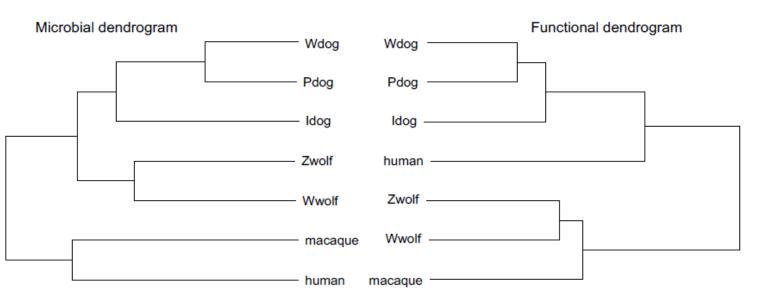
Human metagenomes from public



Indigenous dogs

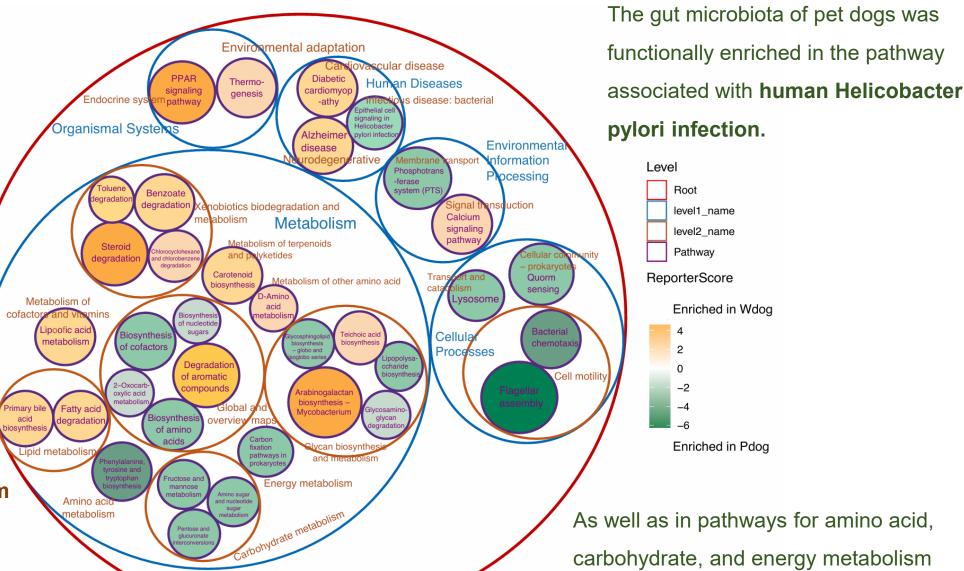

Pet dogs

Materials and Methods



Group	Specimens	MAGs	QS	dRep99	dRep95	Overlapped in stain level	Ratio (%)	Overlapped in species level	Ratio (%)
Zoo wolf	15	1818	384	148	119	8	5.41	45	37.82
Wild wolf	17	3009	982	496	352	6	1.21	48	13.64
Indigenous dog	39	3452	1140	673	426	88	13.08	235	55.16
Pet dog	43	4803	1481	495	240	60	12.12	142	59.17
Working dog	34	5076	1515	441	326	43	9.75	125	38.34
Macaque	18	3131	1165	639	374	34	5.32	225	60.16
Total	166	21,289	6667	2892	1837	239	8.26	820	44.64

- Low number of gut microbial species was detected in zoo wolf samples.
- At the **species level** (95%), macaques shared the most gut microbial species with humans, followed by dogs (pet dogs).
- At the **strain level** (99%), however, dogs (indigenous dog) shared the most microbial strains with humans.


	K	EGG Function	on of Metaboli	ism				
	Phenylalanine, tyrosine and tryptophan biosynthesis	•	•	• 0	• 0			
o acid bolism	Glycine, serine and threonine metabolism	o •		• 0	• 0	• •	• •	
Amino acid metabolism	Cysteine and methionine metabolism	· •	• 0	• 0	• 0	0	•	
	Alanine, aspartate and glutamate metabolism	• 0	• 0	• 0		0 •	0	Gene_Ratio
	Starch and sucrose metabolism	• 0	• 0	• 0	• 0	0 •	0 •	0.0075
_	Pyruvate metabolism	• 0	• 0	0	• 0	• 0	• 0	0.01000.0125
olisn	Propanoate metabolism	• •	• •	•		• 0	• 0	0.0123
netak	Pentose phosphate pathway	• 0	• 0	• 0	• 0	•	• 0	
ate n	Glyoxylate and dicarboxylate metabolism	•	• 0	• 0	• 0			-log(fdr)
Carbohydrate metabolism	Glycolysis / Gluconeogenesis	• 0	• 0	• 0		• 0	• 0	
Carb	Galactose metabolism	• 0	• 0	• 0	• 0	•		600
	Fructose and mannose metabolism	• 0	• 0	• 0		•	•	400
	Amino sugar and nucleotide sugar metabolism	• 0	• 0	• 0				200
, E	Oxidative phosphorylation	0	0	• 0		0	0	
Energy metabolism	Methane metabolism		• 0	• 0	• 0	•	•	-log(fdr)
la e	Carbon fixation pathways in prokaryotes	• 0		0	0	• 0	• 0	
GB	Danitida ahaana hisaanaahaa is	• 0	• 0	• 0	0	• 0		600
0 2	Peptidoglycan biosynthesis							400
LM	Fatty acid biosynthesis				• •	• 0	0	200
>	Pantothenate and CoA biosynthesis				• 0			
MCV	Porphyrin and chlorophyll metabolism		• 0	• •	• •	• 0	• 0	
g E	Pyrimidine metabolism	0	O •	0	0	• 0	• 0	
Nucleotide metabolism	Purine metabolism	• 0		O	0	• 0	• 0	
2 E	•	dog_human	dog_macaque	dog_wolf	human_macaqu	ue wolf_human	wolf_macaque	

In working dogs, the gut microbiota was functionally enriched in pathways related to human diseases such as diabetic cardiomyopathy and Alzheimer's disease.

As well as in pathways involved in **lipid metabolism** and xenobiotic degradation et al.

Summary

- □ In this study, we first compared the gut microbiomes of macaques, dogs with three lifestyles, and wolves from two different habitats with the human gut microbiome;
- Comparative analysis at both the species and strain levels revealed that the gut microbiome of dogs exhibits greater similarity to humans than that of macaques.
- Microbial community analysis showed that macaques are closer to humans in microbial community structure and composition, which consistent with their phylogenetic relationship. However, functional analysis demonstrated that the gut microbiome of dogs is functionally more similar to humans, particularly in metabolic pathways, providing evidence for convergent evolution of metabolic functions between dogs and humans.
- ☐ Further analysis of functional profiles in working dogs and pet dogs revealed that lifestyle-induced metabolic and disease differences in dogs parallel those observed in human responses to occupational environments.

Xiaoyang Wang, Lei Zhu, Yue Lan, Guimei Li, Tong Zhou, Qingguo Huang, Tifei Yuan, et al. 2025. Convergent Evolution of Metabolic Functions: Evidence from the Gut Microbiomes of Humans and Dogs. *iMetaOmics* 2: e70059. https://doi.org/10.1002/imo2.70059

iMeta(宏): 整合宏组学重新认识生物和医学

iMeta WILEY

iMeta(宏)期刊是由宏科学、千名华人科学家和威立共同出版,对标**Cell**的生物/医学类综合期刊,主编刘双江和傅静远教授,欢迎高影响力的研究、方法和综述投稿,重点关注生物技术、大数据和组学等前沿交叉学科。已被<u>SCIE、PubMed</u>等收录,最新IF 33.2,位列全球SCI期刊第65位(前千分之三),中国第5位,微生物学研究类全球第一,中科院生物学双1区Top。外审平均21天,投稿至发表中位数87天。子刊iMetaOmics (宏组学)、iMetaMed (宏医学)定位IF>10和15的生物、医学综合期刊,欢迎投稿!

主页: http://www.imeta.science

出版社: https://wileyonlinelibrary.com/journal/imeta

iMeta: https://wiley.atyponrex.com/journal/IMT2

投稿: iMetaOmics: https://wiley.atyponrex.com/journal/IMO2

iMetaMed: https://wiley.atyponrex.com/journal/IMM3

office@imeta.science imetaomics@imeta.science

更新日期 2025/7/6