

Microbiota-Gut-Brain Axis Multi-Organ Chip Construction and Applications in Drug Evaluation

Yue Tang^{1,2}, Hewen Chen^{1,2}, Ziyue Zhao^{1,2}, Xuesong Kang^{1,2}, Wenxin Wang³, Kun Dai⁴, Yufei Guo⁵, Axin Liang^{1*}, Aiqin Luo^{1*}, Zikai Hao^{1,2*}

¹ Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology,
School of Life Science, Beijing Institute of Technology, Beijing, China
² Advanced Technology Research Institute,
 Beijing Institute of Technology, Jinan, China
³ Institute of Environmental Biology and Life Support Technology,
 School of Biological Science and Medical Engineering,
 Beihang University, Beijing, China
⁴ Shandong Institute for Food and Drug Control, Jinan, China
⁵ Department of Statistics, the George Washington University,
 Washington, District of Columbia, USA

Yue Tang, Hewen Chen, Ziyue Zhao, Xuesong Kang, Wenxin Wang, Kun Dai, Yufei Guo, et al. 2025. Microbiota-gut-brain axis multi-organ chip construction and applications in drug evaluation. *iMetaOmics* 2: e70065. https://doi.org/10.1002/imo2.70065

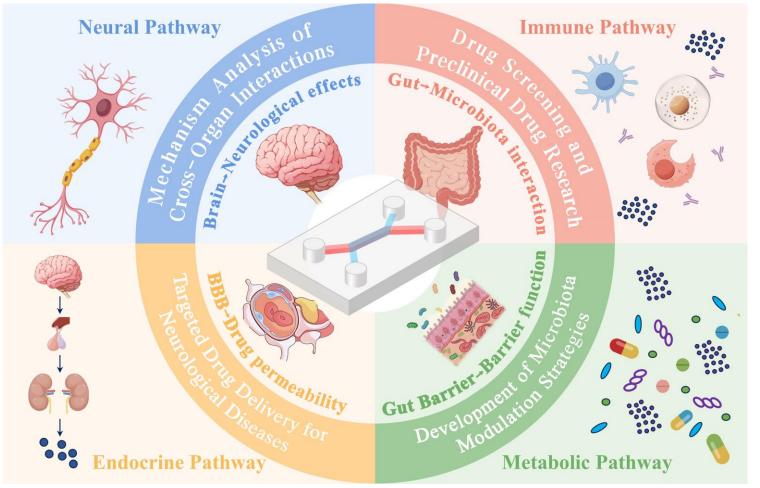
Introduction

Microbiota-Gut-Brain Axis (MGBA)

- ♦ Trillions of microorganisms coexist with the host in the human gut, and microbial dysbiosis impacts human health.
- The gut microbiota engages in bidirectional regulation with the brain through pathways such as the **neural**, **endocrine**, **immune**, **and metabolic** systems, thereby influencing central nervous system functions.
- ♦ The MGBA theory offers novel microbiome-targeted approaches for the treatment of neurological disorders.

Microfluidic Organ-on-a-Chip

♦ Limited by ethical standards and experimental conditions, traditional in vivo and in vitro models **struggle to replicate** the complex human physiological environment and cellular interactions.


- ♦ Organ-on-a-chips, based on microfluidic technology, can dynamically simulate the microenvironmental characteristics of human organs, offering advantages such as high biomimicry, high throughput, and low sample consumption.
- ♦ The MGBA chip system will drive research into complex pathologies, gut microphysiology, and new drugs.

Core of the Review

- •Based on the research pathway from simulating basic physiological structures to reconstructing complex physiological processes, and then to clinical translation, this paper elaborates on **the mechanisms of the MGBA**, as well as the research progress and practical applications of **gut-on-a-chips**, **blood-brain barrier-on-a-chips**, **brain-on-a-chips**, and **multi-organ chips**.
- •Systematically integrating **MGBA** with multi-organ chip technology, this paper analyzes the design innovations and application scope of the gut-blood-brain barrier-brain cascade MGBA chip.

Highlights

- Systematically integrating the Microbiota-gut-brain axis (MGBA) with multi-organ chip technology to construct a research paradigm for elucidating the mechanisms of cross-organ interactions.
- ♦ Providing a comprehensive elaboration on the technical iterations and current development status of core models, including gut-on-a-chip, blood-brain barrier-on-a-chip, brain-on-a-chip, as well as multi-organ cascading techniques.
- Discussing the critical application value of MGBA organ-on-a-chip platforms in drug screening and preclinical drug research, including pharmacokinetic studies, pharmacodynamic profiling, and toxicity evaluation.

Overview of Microbiota-Gut-Brain Axis Mechanisms

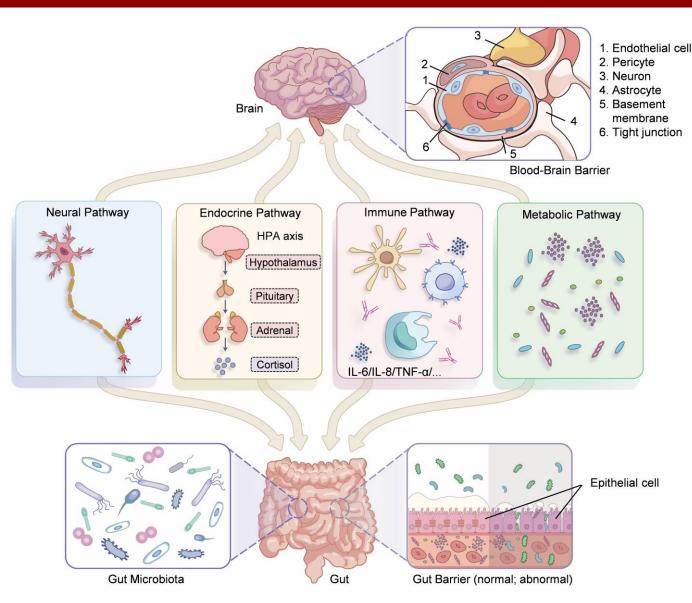


Figure 1. The communication pathways of the microbiota-gut-brain axis.

Main Components

Four Major Systems

Nervous; Endocrine; Immune; Metabolic

Two Barriers

Gut Barrier; Blood-Brain Barrier

Primary Pathways

> Vagus Nerve Transmission

Afferent fibers transmit peripheral signals to the central nervous system, while the parasympathetic nervous system regulates organs such as the gut.

Endocrine Regulation

Environmental stimuli activate the HPA axis, releasing cortisol, which alters the composition and metabolic activity of the gut microbiota.

▶ Immune Interaction

Dysbiosis of the microbiota generates proinflammatory substances, disrupts barrier permeability, and induces neuroinflammation.

> Microbiota Metabolites

Produce short-chain fatty acids and various bioactive substances that participate in the regulation of the nervous, endocrine, and immune systems.

Gut-on-a-Chip

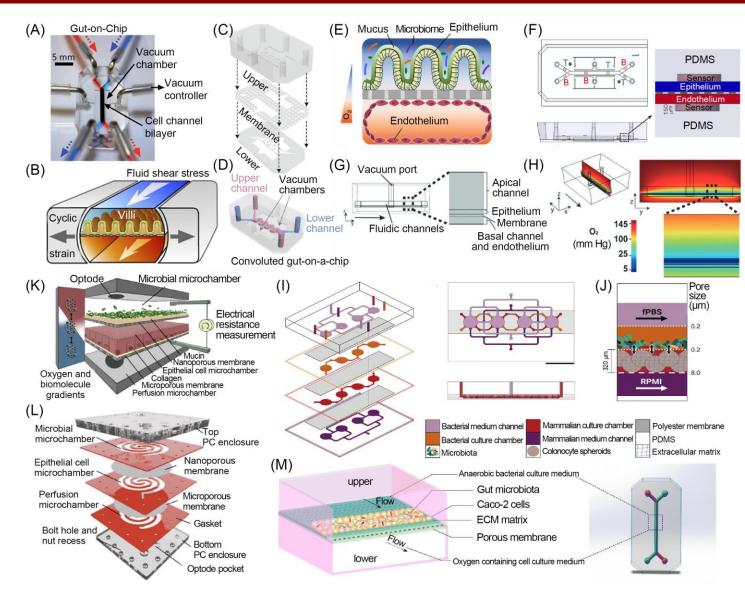


Figure 2. Schematic diagram of the related Gut-on-a-Chip structure.

Model Elements

Structural and Functional Basis

- Small intestinal villi and microvilli structure;
- Resident gut microbiota;
- Mucous layer secretion.

Mechanical Stimulation Simulation

•Laminar flow and periodic mechanical deformation simulate intestinal peristalsis.

Anaerobic Environment Construction

- Nitrogen flushing establishes an oxygen gradient within the chamber;
- Computer simulation and impermeable membranes regulate oxygen permeability;
- •Time difference controlled oxygen;
- Real-time monitoring of oxygen sensor.

Practical Applications

- Intestinal disease research;
- Pharmacokinetic studies;
- Probiotic screening.

Technical Challenges

- Model Simplification Limitations;
- Material Limitations.

Blood-Brain Barrier-on-a-Chip

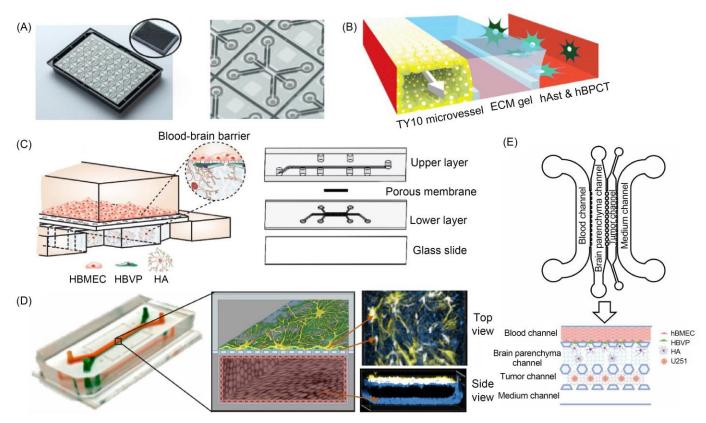


Figure 3. Schematic diagram of the related Blood-Brain Barrier-on-a-Chip structure.

Model Elements

Components and Function

- •Includes brain microvascular endothelial cells with intercellular tight junctions, astrocytes, pericytes, and the basement membrane.
- Exhibits selective permeability, isolating peripheral blood from brain parenchyma and maintaining the stability of the neuronal microenvironment.

Chip Design

- The vascular and neural chambers are separated by a porous membrane.
- Fluid shear stress mimics in vivo hemodynamics, promoting the formation of 3D vessel-like structures.

Practical Applications

- Targeted drug design;
- Evaluation of drug active ingredient transport efficiency across the barrier and therapeutic efficacy;
- Construction of disease-specific models.

Technical Challenges

- Traditional chip flow limitations;
- •Complexity of cell co-culture;
- Structural integration design.

Brain-on-a-Chip

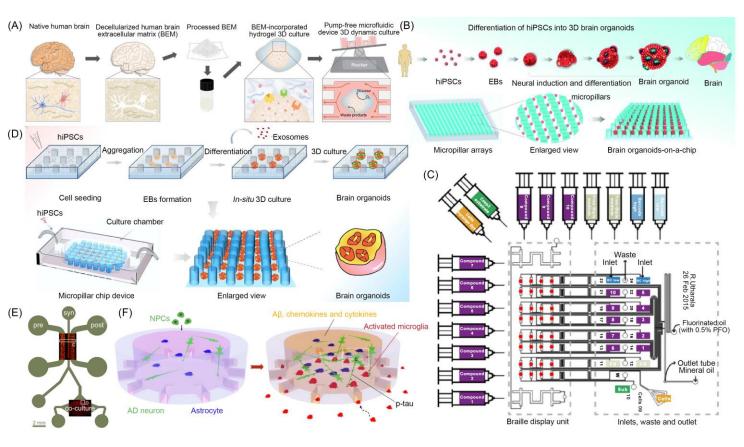


Figure 4. Schematic diagram of the related Brain-on-a-Chip structure.

Model Elements

Structural and Functional Basis

•Neurons (information integration, transmission) collaborate with glial cells (support, nutrition, protection) to govern the body's coordination and interaction with the external environment.

Chip Design

- A 3D hydrogel matrix combined with bidirectional fluid perfusion promotes the formation of brain-like structures;
- •In situ differentiation of hiPSCs forms functional human brain organoids;
- •Co-culture of neurons and glial cells promotes brain synapse formation and spontaneous neural activity.

Practical Applications

- Simulation of various neurological diseases and pathological studies;
- Brain development and brain injury research.

Technical Challenges

- Real-time monitoring of brain tissue metabolism;
- Precise simulation of complex brain disease pathologies.

Multi-Organ Chip Cascade Technology

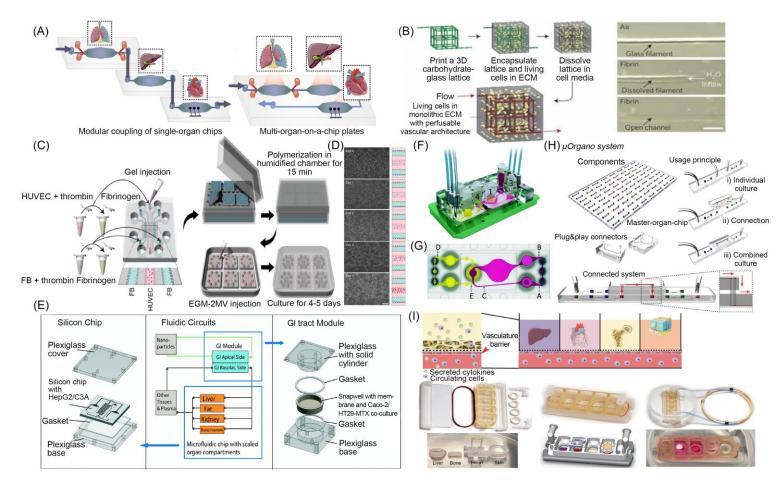


Figure 5. Schematic diagram of the related multi-organ chip structure.

Technical Challenges

- Organ scaling ratio; Pheromone integration;
- •Realizing the "human body on a chip."

System Classification

Single-organ chip coupling system

Flexible reconfiguration for dynamic studies.

Multi-Organ-on-a-Chip Plates

•Compact structure reduces leakage risk and simulates minimal systemic circulation.

Vascularized Cascade Technology

●3D printing constructs large-scale blood vessels (>100μm); ●Endothelial cells generate microvessels (<100μm).

Cascade Types

- Static cascade: Specific organs are fixed in single-chip chambers;
- Semi-static cascade: Organs are precultured and then integrated;
- Flexible cascade: Plug-and-play modular design.

Practical Applications

•Multi-organ interstitial chip reproduces the pharmacokinetic and pharmacodynamic characteristics of drugs in the body.

Microbiota-Gut-Brain Axis-Multi-Organ Chip Integration and Applications in Drug Evaluation

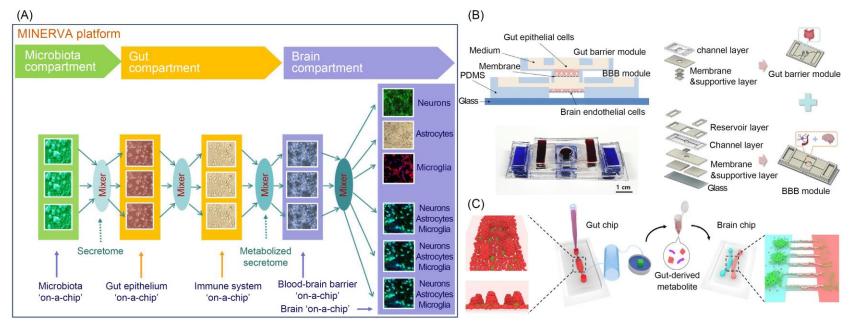


Figure 6. Schematic diagram of the related microbiota-gut-brain axis-multi-organ chips.

Technical Challenges

- Materials and Processing: Microenvironment requirements for different cell types.
- ©Cell Growth: Activity and functional stability of cells in long-term co-culture.
- **©Fluid Control**: Balancing the regulation of flow rate and pressure at the microscale to match the fluid dynamics of multi-organ modules.
- •Signal Analysis: Real-time monitoring and analysis technology for multi-channel dynamic signals.

Application Research

- •MINERVA platform (funded by ERC);
- Split-type Gut-Brain Axis-on-a-Chip.

Mechanism Research

• Reveals the impact of gut-derived substances on neurodevelopment and neurodegenerative diseases.

Drug Screening

• Evaluates the regulatory effects of psychotropic drugs and probiotics on the microbiota-gut-brain axis, exploring the potential of microbiotaassisted therapy for neurological disorders.

Summary and Outlook

☐ Research Significance and Technological Applications

- Reveals the mechanisms of gut-brain interactions, advancing the frontiers of gut science;
- Constructs dynamic cell culture systems, simulating the human physiological environment;
- •Applicable to basic research on brain diseases, drug toxicity prediction, and ADME optimization.

□ Future Challenges and Development Directions

Technical Challenges

- Enhanced precision of physiological environment simulation;
- Stable maintenance of long-term cell activity.

Innovative Strategies

Technological Integration:

Microfluidic chips + Tissue engineering + Stem cell culture + Biosensing + Advanced manufacturing.

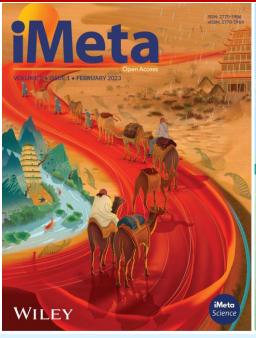
Focus Areas:

Functionalization of organoids; Development of real-time monitoring systems; Construction of standardized platforms.

Expected Impact

- •Promotes personalized medicine and precision drug development;
- Reshapes the treatment paradigm for complex diseases.

Yue Tang, Hewen Chen, Ziyue Zhao, Xuesong Kang, Wenxin Wang, Kun Dai, Yufei Guo, et al. 2025. Microbiota-gut-brain axis multi-organ chip construction and applications in drug evaluation.


iMetaOmics 2: e70065. https://doi.org/10.1002/imo2.70065

iMeta: To be top journals in biology and medicine

WILEY

"iMeta" launched in 2022 by iMeta Science Society, impact factor (IF) 33.2, ranking top 65/22249 in world and 2/161 in the microbiology. It aims to publish innovative and high-quality papers with broad and diverse audiences. Its scope is similar to Cell, Nature Biotechnology/Methods/Microbiology/Medicine/Food. Its unique features include video abstract, bilingual publication, and social media with 600,000 followers. Indexed by SCIE/ESI, PubMed, Google Scholar etc.

"iMetaOmics" launched in 2024, with a target IF>10, and its scope is similar to Nature Communications, Cell Reports, Microbiome, ISME J, Nucleic Acids Research, Briefings in Bioinformatics, etc.

"iMetaMed" launched in 2025, with a target IF>15, similar to Med, Cell Reports Medicine, eBioMedicine, eClinicalMedicine etc.

Society: http://www.imeta.science

Publisher: https://wileyonlinelibrary.com/journal/imeta

iMeta: https://wiley.atyponrex.com/journal/IMT2

Submission: iMetaOmics: https://wiley.atyponrex.com/journal/IMO2

iMetaMed: https://wiley.atyponrex.com/journal/IMM3

Update 2025/7/6